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Abstract
The t-test and the analysis of variance are commonly used as statistical significance testing methods. How-
ever, they cannot assess the significance of differences between thresholds within individual observers
estimated from the constant stimuli method; these thresholds are not defined as averages of samples, but
they are rather defined as functions of parameters of psychometric functions fitted to participants’ responses.
Moreover, the statistics necessary for these statistical testing methods cannot be derived. In this paper, we
propose a new statistical testing method to assess the statistical significance of differences between thresh-
olds estimated from the constant stimuli method. The new method can assess not only threshold differences
but also main effects and interactions in multifactor experiments, exploiting the asymptotic normality of
maximum likelihood estimators and the characteristics of multivariate normal distributions. This proposed
method could be used in similar cases to the analysis of variance for thresholds estimated from the adjust-
ment method and the staircase method. Finally, we present some data on simulations in which we tested
assumptions, power and type I error of the proposed method.
© Koninklijke Brill NV, Leiden, 2011
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1. Introduction

In many psychophysical studies, thresholds such as detection thresholds or discrim-
ination thresholds are estimated from various responses of the participants. After the
threshold estimations, an intriguing question is whether there are significant differ-
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ences between the thresholds, that is, whether there are some significant effects of
experimental condition differences on thresholds. Statistical significance testing is
a natural approach for answering this question, because participants’ responses may
be very variable and the thresholds estimated from these responses are considered
as probability variables.

The t-test and the analysis of variance (ANOVA) are popular statistical test-
ing methods used to assess such threshold differences. Both these methods test
differences between multiple population means using their samples. In both these
methods, it is necessary to calculate statistical values, such as t-values, F -values,
and degrees of freedom from means and variances of samples. In psychophysical
experiments, the means of response values in the adjustment method and the means
of ‘reversal’ points where the experimental series turn in the staircase method are
frequently defined as thresholds. We can apply the t-test and the ANOVA to assess
differences between thresholds estimated from the adjustment method by regarding
each of those response values as an independent sample from a population. When a
conclusive threshold is defined as a mean of multiple thresholds that is repeatedly
measured in different sessions for each experimental condition, the t-test and the
ANOVA can also be applied in the staircase method by considering each threshold
as a single sample.

The constant stimuli method can also be used to estimate thresholds accurately
and is frequently used in psychophysical experiments. The definition of a thresh-
old in the constant stimuli method is mostly different from that in the adjustment
method and the staircase method. In the constant stimuli method, a psychometric
function, such as a cumulative normal distribution function or a logistic function,
is fitted to the percentage of ‘yes’ responses in a yes–no task (or correct responses
in a forced-choice task) as a function of the variable of interest, and then the vari-
able values corresponding to some percentages of ‘yes’ responses (typically 50%
and such are used) are defined as thresholds. We cannot apply the t-test and the
ANOVA for thresholds estimated from the constant stimuli method, because they
are not means of samples. If the thresholds are estimated for many participants from
the constant stimuli method, we might apply the t-test and the ANOVA for those
thresholds by regarding each individual threshold as a sample. Many studies have
tested threshold differences in this way (e.g., Kingdom and Kasrai, 2006; Nagy et
al., 2005; te Pas and Koenderink, 2004). However, this method has some disad-
vantages; for example, threshold differences for an individual participant cannot be
assessed. Moreover, this method does not evaluate statistics in estimating each par-
ticipant’s thresholds, and if data are sparse, then the imprecision of the individual
estimates can make this method inefficient.

There are also some other statistical testing methods. Yssaad-Fesselier and
Knoblauch (2006) (hereafter, we abbreviate this method to the YFK method) have
proposed a testing method for threshold differences. This method introduces psy-
chometric function parameters corresponding to threshold differences between mul-
tiple psychometric functions. Although the detailed methods for testing differences
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between more than three thresholds are not explicitly stated in their paper, their
method is very flexible and can be applied to different kinds of statistical testing
about psychometric functions. Matlab scripts employing the rationale to analyze
data from the constant stimuli method have also been developed (Prins and King-
dom, 2009). The bootstrap method (Efron, 1982; Wichmann and Hill, 2001b) may
also be applied as a testing method for these threshold difference issues by resam-
pling thresholds from two different psychometric functions under null hypothesis
and evaluating bootstrap distributions of the threshold differences. For example,
Wichmann and Hill (2001b) suggested that the bootstrap confidence interval can be
employed as an index for testing threshold differences, although, to our knowl-
edge, there are no publications explicitly indicating this bootstrap approach for
threshold differences. In other words, although these approaches may be used for
testing threshold differences estimated from the constant stimuli method, there are
no publications that specifically exposit statistical testing methods for such thresh-
old differences from the constant stimuli method.

In this paper, we propose a new statistical significance testing method for thresh-
olds estimated from the constant stimuli method. In this proposed method, it is
assumed that an estimated threshold is normally distributed according to the asymp-
totic normality of maximum likelihood estimators. We apply characteristics of
multivariate normal distributions to assess threshold differences, since threshold
differences are normally distributed under this assumption. A unique aspect of the
proposed method is to use the characteristics of a multivariate normal distribution
in which a Mahalanobis squared distance is distributed as chi-square. This method
is superior to the t-test and the ANOVA in some aspects; the threshold differences
in each participant can be independently assessed, and all the responses of par-
ticipants are used for testing, leading to efficient testing results. Although we do
not propose any novel mathematical theories but rather combine existing statistical
theories to test the significance of threshold differences, we propose this method
because it might help to statistically analyze the data in practical experiments with
the constant stimuli method. In addition, the proposed method can be applied to
the data derived from the staircase method if the data can be analyzed by fitting a
psychometric function in a manner similar to the constant stimuli method.

2. Statistical Significance Testing in a One-Factor Experiment

In this section, we describe the method to assess differences of multiple thresholds
estimated from the constant stimuli method in a one-factor experiment. This method
corresponds to the one-way ANOVA for thresholds defined as sample means.

2.1. Threshold in the Constant Stimuli Method

Figure 1 shows an example of synthetic data derived from the constant stimuli
method. In the constant stimuli method, the observer’s response to a stimulus with
a given parameter value is a binary response: ‘yes’ or ‘no’ in a yes–no task, or
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Figure 1. Example of synthetic data derived from the constant stimuli method. A logistic model is
fitted to the data with the maximum likelihood method. The stimulus parameter value corresponding
to a certain probability of a ‘yes’ (or correct) response, such as 50%, is defined as a stimulus value.

correct or incorrect in a forced-choice task. The probability of a ‘yes’ (or correct)
response for each stimulus parameter value can be estimated from the collective
response of the observers. In general, this probability of a ‘yes’ response monotoni-
cally increases with the stimulus parameter in many cases, forming a psychometric
function. This can be observed in Fig. 1.

As described above, a threshold is defined as the stimulus parameter value that
corresponds to a certain probability of a ‘yes’ response. To derive this stimulus
parameter value, a psychometric function is usually fitted using a sigmoid statistical
model such as a logistic model, a probit model, or a Weibull model. The sigmoid
model used in Fig. 1 is a logistic model. The logistic model is expressed as

f (x) = 1

1 + exp((θ0 − x)/θ1)
, (1)

where x is stimulus parameter value, and θ0 and θ1 are parameters (independent
variables) of the model. By modeling the psychometric function, a stimulus param-
eter value corresponding to an arbitrary probability of a ‘yes’ response can be easily
calculated with the parameters of the model. For example, in a logistic model, the
stimulus parameter value corresponding to 50% of a ‘yes’ response (x50) is simply
θ0. Thus, thresholds can be expressed in terms of the parameters of the fitted model
based on data collected using the constant stimuli method.

In the following subsections, we describe the proposed model for the statisti-
cal testing of the difference between multiple thresholds estimated from different
psychometric functions and the statistics needed for the testing.

2.2. Null Hypothesis and Alternative Hypothesis

Here, ŷ = (ŷ1, ŷ2, ŷ3, . . . , ŷn) denotes n thresholds estimated from the constant
stimuli method from one observer for different experimental conditions, and y =
(y1, y2, y3, . . . , yn) denotes the true values of ŷ = (ŷ1, ŷ2, ŷ3, . . . , ŷn) (an estimated
value of an arbitrary value z is denoted by ẑ in this paper). For these thresholds,
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we want to assess whether there are any differences between the true values of the
thresholds. Then, the null hypothesis and the alternative hypothesis are

H0: y1 = y2 = y3 = · · · = yn and
(2)

H1: not H0.

We introduce a new H0 that is equivalent to equation (2) but easier to assess than
equation (2). Using τ = (τ1, τ2, τ3, . . . , τn−1), whose elements are defined by

τi = y1 − yi+1, i = 1,2,3, . . . , n − 1, (3)

the null hypothesis shown in equation (2) is equivalent to

H0: τ = 0. (4)

Thus, we should judge whether H0 in equation (4) is rejected to assess the differ-
ences between the true values of thresholds.

2.3. Statistics of τ̂

In this section, we describe the statistics of τ̂ necessary for the test. First, we de-
scribe the way in which each estimated threshold ŷi (i = 1,2, . . . , n) is distributed.
In many cases, the threshold value can be estimated directly as a parameter of the
model fit to the data. However, in this study, we show how the mean and variance of
the threshold can be derived under fairly general assumptions even when the model
parameters do not directly correspond to the threshold itself but the threshold is ex-
pressed as a function of the model parameters. We then apply related procedures to
the problem of testing the statistical significance of differences between thresholds.
To estimate a threshold as described above, it is necessary to calculate θ̂ , the vari-
ables of the sigmoid model, to best fit it to the observer’s responses derived from
the constant stimuli method. To consider the threshold’s distribution, the maximum
likelihood method, a popular method for fitting, has a convenient characteristic.
The distribution of maximum likelihood estimators θ̂ (e.g., θ̂0 and θ̂1 in a logistic
function) is an asymptotically multivariate normal distribution with mean vector θ

and its variance–covariance matrix �θ , if many responses of an observer are used
for estimating θ̂ (Edwards, 1993). In addition, the estimated variance–covariance
matrix �̂θ can be asymptotically estimated as an inverse of a Fisher information
matrix calculated by using the maximum likelihood method (Pratt, 1976). Because
�θ is typically unknown, �̂θ is used in practice instead of �θ as in other statistical
testing methods.

To consider the distribution of ŷi , the Delta method (Oehlert, 1992) is very
useful. The Delta method can be used to approximately calculate the means and
variances of random variables that can be expressed as functions of asymptotically
normal random variables. Hence, we can obtain the means and variances of asymp-
totically normal distributions of thresholds and standard errors (SEs), which are
functions of θ̂ , from the Delta method.
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2.3.1. Theorem 1: The Delta Method
Asymptotically θ̂ is

θ̂ =

⎡
⎢⎢⎣

θ̂1
θ̂2
...

θ̂p

⎤
⎥⎥⎦ ∼ N

⎡
⎢⎢⎣

⎡
⎢⎢⎣

θ1
θ2
...

θp

⎤
⎥⎥⎦ ,�θ

⎤
⎥⎥⎦ , (5)

where ‘∼ N ’ means the left-hand side is normally distributed and �θ is a variance–
covariance matrix; similarly, a set of functions g(θ̂) = [g1(θ̂), g2(θ̂), g3(θ̂), . . . ,

gq(θ̂)]t (q < p) that can be approximated over the range of interest by linear com-
binations of the elements of θ̂ , is asymptotically represented as

g(θ̂) =

⎡
⎢⎢⎣

g1(θ̂)

g2(θ̂)
...

gq(θ̂)

⎤
⎥⎥⎦ ∼ N

⎡
⎢⎢⎣

⎡
⎢⎢⎣

g1(θ)

g2(θ)
...

gq(θ)

⎤
⎥⎥⎦ ,G�θGt

⎤
⎥⎥⎦ , (6)

where G is a q × p matrix whose each element Gij is

Gij =
(

∂gi(θ)

∂θj

)

θ=θ̂

. (7)

From equation (6), the asymptotic means and variance–covariance matrix of g(θ̂)

are written respectively as

[g1(θ), g2(θ), g3(θ), . . . , gq(θ)]t and
(8)

�g(θ) = G�θGt .

From Theorem 1, if the distribution of the estimated parameters of a psycho-
metric function is an asymptotically multivariate normal distribution, and each
estimated threshold ŷi (i = 1,2, . . . , n) is a function of those parameters as de-
scribed, then ŷi is also asymptotically normal with mean yi and variance σ̂ 2

i that is
estimated from �̂θ from equation (8) (σ̂ 2

i corresponds to �g(θ), the left-hand side
term of equation (8)). Therefore, all the thresholds ŷi (i = 1,2, . . . , n) are asymp-
totically normal. Thus, the distribution of ŷ is an asymptotically multivariate normal
distribution with mean vector y and variance–covariance matrix �̂y, where �̂y is

�̂y =

⎡
⎢⎢⎣

σ̂ 2
1 0

σ̂ 2
2

. . .

0 σ̂ 2
n

⎤
⎥⎥⎦ , (9)

if the thresholds are independent, that is, if the covariances between the thresholds
are zero.

Finally, we describe the distribution of τ̂ , where τ̂ is a function of ŷ as shown
in equation (3). If the distribution of ŷ is an asymptotically multivariate normal
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distribution, the distribution of τ̂ is also an asymptotically multivariate normal dis-
tribution according to the Delta method. The mean vector of the distribution is τ ,
and the variance–covariance matrix is calculated from �̂y and equation (8).

2.4. Characteristics of a Multivariate Normal Distribution

We assume that τ̂ is multivariately normal to assess threshold differences, be-
cause the distribution of τ̂ is asymptotically multivariate normal, as described in
Section 2.2. A multivariate normal distribution has an important characteristic for
testing (Mardia et al., 1979).

2.4.1. Theorem 2: Mahalanobis Squared Distance
For p-dimensional τ̂ , whose distribution is a p-dimensional multivariate normal
distribution with mean vector τ and variance–covariance matrix �, the Maha-
lanobis squared distance

d2 = (τ̂ − τ )t�−1(τ̂ − τ ) (10)

is chi-square distributed with p degrees of freedom.
Again, the null hypothesis is τ = 0. Thus, τ̂ t�τ

−1τ̂ is chi-square distributed
with n − 1 degrees of freedom under H0 from Theorem 2. Hence, H0 should be
rejected if τ̂ t�τ

−1τ̂ is inside the critical region of a chi-square distribution with
n − 1 degrees of freedom, and should not be rejected if τ̂ t�τ

−1τ̂ is outside the
critical region.

2.5. Procedure of Testing

The procedure to statistically assess the significance of threshold differences is sum-
marized as follows:

1. Analyze the results of a one-factor experiment with the maximum likelihood
method, and estimate thresholds ŷ and a variance–covariance matrix �̂y (co-
variances in �̂y are zero if thresholds are independent). The null hypothesis
and the alternative hypothesis are

H0: y1 = y2 = y3 = · · · = yn and

H1: not H0, respectively.

2. Calculate τ̂ with equation (3), and H0 of step 1 is equivalent to

H0: τ = 0.

Calculate �̂τ , the variance–covariance matrix of τ̂ , from equation (8) of the
Delta method. Assume that τ̂ is multivariately normal.

3. Calculate τ̂ t�−1
τ τ̂ , which is chi-squared with n − 1 degrees of freedom under

H0 according to the characteristic of a multivariate normal distribution. Calcu-
late the p-value using the chi-square distribution with n−1 degrees of freedom.
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4. Reject H0 if the p-value calculated in step 3 was smaller than the significant
level (that is, we judge that threshold differences are statistically significant); do
not reject H0 if the p-value was larger (i.e., we judge that threshold differences
are not statistically significant).

2.6. Example of Testing

We show an example of statistical significance testing for thresholds estimated from
the constant stimuli method in an experiment in which we measured the detec-
tion thresholds of color direction (hue) differences from four background colors
(whose color directions are 0◦, 90◦, 180◦ and 270◦) on an isoluminant plane. The
observer’s responses were derived from a yes–no task. The number of trials and
‘yes’ responses for each color direction difference between the test color and the
background color for each background color direction are shown in Table 1. Psy-
chometric functions (the logistic function was used) fitted to the results by the
maximum likelihood method are shown in Fig. 2. Estimated parameters (θ̂0 and
θ̂1) of psychometric functions fitted to the results, their variances, and their covari-
ances are shown in Table 2. In a logistic function, a threshold ŷ corresponding to
50% ‘yes’ responses is simply

ŷ = θ̂0, (11)

where θ̂0 is one of the estimated parameters of the fitted logistic function, and their
variance σ̂ 2 is

σ̂ 2 = Var(θ̂0), (12)

where Var(θ̂0) is a variance of θ̂0.
The probit and Weibull models can be used as psychometric functions to esti-

mate a threshold and to assess threshold differences with our proposed method if

Table 1.
Trial numbers and ‘yes’ responses derived from the constant stimuli method (synthetic)

Color direction
difference

Background color direction (◦)

0 90 180 270

# of # of yes # of # of yes # of # of yes # of # of yes
trials responses trials responses trials responses trials responses

0 30 0 30 0 30 0 30 0
2 30 3 30 2 30 7 30 2
4 30 9 30 4 30 9 30 6
6 30 17 30 8 30 15 30 12
8 30 25 30 13 30 18 30 22

10 30 28 30 20 30 22 30 26
12 30 30 30 27 30 27 30 29
14 30 30 30 30 30 29 30 30
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Figure 2. Probabilities of ‘yes’ responses of Table 1 and the logistic functions fitted to the data as
psychometric functions.

Table 2.
Parameters of the logistic functions estimated from the data in Table 1

Color direction
difference

Background color direction (◦)

0 90 180 270

Estimate Variance Estimate Variance Estimate Variance Estimate Variance
value value value value

θ̂0 (threshold) 5.519 0.1 8.100 0.132 6.488 0.192 6.527 0.109
θ̂1 (covariance) 1.476 0.036 1.912 0.053 2.62 0.103 1.611 0.039

−0.002 0.004 −0.006 −0.001

the parameter estimations were performed with the maximum likelihood method,
although the logistic function is used here.

Differences between thresholds shown in Table 2 could be assessed with the
proposed statistical testing method as explained below:

1. Assuming that thresholds are independent, the threshold vector ŷ and its
variance–covariance matrix �̂y are

ŷ =

⎡
⎢⎢⎣

ŷ1
ŷ2
ŷ3
ŷ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

5.519
8.100
6.488
6.527

⎤
⎥⎥⎦ (13)

and

�̂y =
⎡
⎢⎣

0.100 0 0 0
0 0.132 0 0
0 0 0.192 0
0 0 0 0.109

⎤
⎥⎦ . (14)
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2. τ̂ are calculated from ŷ and equation (3) as

τ̂ =
⎡
⎣

τ̂1
τ̂2
τ̂3

⎤
⎦ =

⎡
⎣

ŷ1 − ŷ2
ŷ1 − ŷ3
ŷ1 − ŷ4

⎤
⎦ =

⎡
⎣

−2.581
−0.969
−1.008

⎤
⎦ . (15)

From equation (7), G, which is necessary for the calculation of �̂τ (the
variance–covariance matrix of τ̂ ), can be calculated using the Delta method
as

G =
⎡
⎢⎣

∂τ1
∂y1

∂τ1
∂y2

∂τ1
∂y3

∂τ1
∂y4

∂τ2
∂y1

∂τ2
∂y2

∂τ2
∂y3

∂τ2
∂y4

∂τ3
∂y1

∂τ3
∂y2

∂τ3
∂y3

∂τ3
∂y4

⎤
⎥⎦ =

[1 −1 0 0
1 0 −1 0
1 0 0 −1

]
. (16)

�̂τ is calculated from G and equation (8) as

�̂τ = G�̂yGt

=
[1 −1 0 0

1 0 −1 0
1 0 0 −1

]⎡
⎢⎣

0.100 0 0 0
0 0.132 0 0
0 0 0.192 0
0 0 0 0.109

⎤
⎥⎦

×
⎡
⎢⎣

1 1 1
−1 0 0
0 −1 0
0 0 −1

⎤
⎥⎦

=
[0.0232 0.010 0.010

0.010 0.292 0.010
0.010 0.010 0.209

]
. (17)

3. τ̂ t �̂−1
τ τ̂ , which is chi-square distributed with three degrees of freedom accord-

ing to the characteristic of a multivariate normal distribution, is calculated as

τ̂ t �̂−1
τ τ̂ = [−2.581 −0.969 −1.008 ]

×
[0.00177 0.00066 0.00066

0.00066 0.00209 0.00066
0.00066 0.00066 0.00191

][−2.581
−0.969
−1.008

]

= 28.834. (18)

According to the chi-square table with three degrees of freedom, the p-value
corresponding to this τ̂ t �̂−1

τ τ̂ is

p = 2.43 × 10−6. (19)

4. If the significant level is 5%, we reject H0 according to p = 2.43×10−6 < 0.05,
that is, we judge that the differences of thresholds in Table 2 are statistically
significant.
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2.7. Multiple Comparison Method

The statistical testing method described above assesses only whether all the true
values of thresholds are identical. However, the method does not answer which
threshold pairs have significant differences. Multiple comparison methods can be
utilized to answer this question.

Many kinds of multiple comparison methods have been published and used. Be-
cause our method can test difference between any two thresholds estimated from the
constant stimuli method, one can choose a favorable multiple comparison method
and combine it with our method. Holm’s method (Holm, 1979) is an example of
such methods, where significant levels are adjusted so that the total of type I er-
rors in assessments of threshold pairs does not exceed a significant level. If Holm’s
method is applied to the thresholds in Table 2 with α = 0.05, the threshold differ-
ences in ‘0 and 90’, ‘90 and 270’ and ‘90 and 180’ are statistically significant, and
those in other pairs are not statistically significant.

3. Statistical Significance Testing in a Multifactor Experiment

In the previous section, we described a new statistical significance testing method
for thresholds measured in a one-factor experiment. In this section, we propose
a testing method for thresholds measured in a factorial experiment. This method
corresponds to the multi-way ANOVA.

In a psychophysical experiment, a factor corresponds to a dimension of the ex-
perimental conditions whose effects on thresholds are of interest to the investigator.
Unlike in a one-factor experiment, in a multifactor experiment, not only the main
effect in each factor but also the interaction between factors must be considered.
In the proposed method, we assess the main effects and the interactions separately.
Using a two-factor experiment as an example, we first describe how to calculate
the main effect of each factor and the interaction between factors, and then de-
scribe how to assess whether the main effects and the interaction are statistically
significant on the basis of the Delta method and the characteristics of a multivariate
normal distribution as described in Section 2.

3.1. Main Effect and Interaction

3.1.1. Symbol Introduction
We introduce some symbols. Although we use a two-factor experiment as an exam-
ple to explain the main effects and interactions, the testing procedure is the same
for experiments with more than two factors. Let two factors be denoted by A and B
with m and n numbers of levels, respectively, and m × n thresholds estimated from
the constant stimuli method by

ŷ =

⎡
⎢⎢⎣

ŷ1·1 ŷ1·2 · · · ŷ1·n
ŷ2·1 ŷ2·2 · · · ŷ2·n
...

...
...

...

ŷm·1 ŷm·2 · · · ŷm·n

⎤
⎥⎥⎦ . (20)



102 T. Nagai et al. / Seeing and Perceiving 24 (2011) 91–124

A level is an experimental condition for each factor, and the number of levels
corresponds to the number of experimental conditions for each factor. Then, the
grand mean (mean between all the factors) of y (the true value of ŷ) is denoted by
μ. The mean of true values of the level i of A between all the factors of B is denoted
by μi··, and the mean of true values of the level j of B between all the factors of A
is denoted by μ··j . As a result, μ,μi·· and μ··j are respectively expressed as

μ =
∑

i

∑
j yi·j

m × n
, (21)

μi·· =
∑

j yi·j
n

, (22)

μ··j =
∑

i yi·j
m

. (23)

3.1.2. Main Effect of Each Factor
The main effect of each factor is the influence of the level differences in the factor
on the true values of thresholds. The main effect of the level i of A and that of the
level j of B are respectively expressed as (Edwards, 1993)

αi = μi·· − μ (24)

and

βj = μ··j − μ. (25)

3.1.3. Interaction between Factors
An interaction is the component of yi·j which cannot be represented by its main
effect and the grand mean. The interaction of the level i of A and of the level j of
B is (Edwards, 1993)

(αβ)i·j = yi·j − (αi·· + β··j + μ)

= yi·j − (μi·· − μ) − (μ··j − μ) − μ

= yi·j − μi·· − μ··j + μ. (26)

3.2. How to Assess Main Effects

3.2.1. Null Hypothesis and Alternative Hypothesis
We consider the main effect of factor A. Nonexistence of the main effect of A means
that all the main effects of A (equation (24)) are zero. The null hypothesis H0 and
the alternative hypothesis H1 to test the main effect of A are, respectively,

H0: α1 = α2 = α3 = · · · = αm = 0 and H1: not H0. (27)

In this study, we introduce a new H0 that is equivalent to equation (27) and easy
to assess as in Section 2. Since

∑
i αi = 0, using τA = (τA1, τA2, τA3, . . . , τA(m−1))

whose components are

τAi = α1 − αi+1 = (μ1·· − μ) − (μ1+1·· − μ)

= μ1·· − μ1+1··, i = 1,2, . . . ,m − 1, (28)
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the H0 of equation (27) is equivalent to

H0: τA = 0. (29)

Hence, we can assess the main effect of A by judging whether H0 of equa-
tion (29) is rejected.

3.2.2. Procedure of Testing
The testing procedure is identical to the method described in Section 2. Under
the assumption that τ̂A is multivariately normal and H0, τ̂

t
A�̂−1

τAτ̂A is chi-square
distributed with m − 1 degrees of freedom according to the characteristic of a mul-
tivariate normal distribution, where �̂τA is a variance–covariance matrix of τ̂A and
can be calculated from �̂y (a variance–covariance matrix of ŷ) according to the
Delta method; then, the procedure to assess the main effect of factor A is summa-
rized as follows:

1. Estimate thresholds ŷ and their variance–covariance matrix �̂y (covariances in
�̂y are zero if the thresholds are independent as in Section 2). Then, H0 and H1
are

H0: α1 = α2 = α3 = · · · = αm = 0

and

H1: not H0.

2. Calculate τ̂A. Then, H0 in step 1 is equivalent to

H0: τA = 0.

Calculate �̂τA, the variance–covariance matrix of τ̂A, according to the Delta
method. Assume that τ̂A is multivariately normal.

3. Calculate τ̂ t
A�̂−1

τAτ̂A, which is chi-square distributed with m − 1 degrees of
freedom under H0. Compute the p-value corresponding to τ̂ t

A�̂−1
τAτ̂A from the

chi-square distribution.

4. Reject H0 if the p-value is smaller than the significant level (the main effect of
the factor A is statistically significant), and do not reject H0 if the p-value is
larger than the significant level (the main effect of the factor A is not statistically
significant).

The assessment of the main effect of B is identical to the assessment of A, which
is described above.

3.3. Procedure to Assess Interactions

3.3.1. Null Hypothesis and Alternative Hypothesis
The number of interactions ((αβ)i·j ) is m × n according to the combination of
levels of A and B. Nonexistence of the interaction between A and B means that
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interactions for all the combinations of A and B are zero. To assess whether there
is a significant interaction between A and B, H0 and H1 are given as

H0: (αβ)1·1 = (αβ)1·2 = · · · = (αβ)2·1 = · · · = (αβ)m·n = 0

and

H1: not H0.

We introduce a new H0 as done in the previous sections. Since
∑

i (αβ)i·j = 0
and

∑
j (αβ)i·j = 0 (Edwards, 1993), using

τAB = (τAB(1·1), τAB(2·1), τAB(3·1), . . . , τAB(m−1·1),

τAB(1·2), τAB(2·2), . . . , τAB(m−1·n−1))

whose components are

τAB(i·j) = (αβ)i·1 − (αβ)i·j+1

= (yi·1 − μi·· − μ··1 + μ) − (yi·j+1 − μi·· − μ··j+1 + μ)

= yi·1 − yi·j+1 − μ··1 + μ··j+1,

i = 1,2,3, . . . ,m − 1, j = 1,2,3, . . . , n − 1, (30)

the null hypothesis above is equivalent to

H0: τAB = 0. (31)

Hence, we can assess the interaction between A and B by judging whether H0 of
equation (31) is rejected.

3.3.2. Procedure of Testing
The testing should be performed according to the procedures proposed in the
previous sections. Under the assumption that τ̂AB is multivariately normal and
H0, τ̂

t
AB�̂−1

τABτ̂AB is chi-square distributed with (m − 1) × (n− 1) degrees of free-
dom according to the characteristic of a multivariate normal distribution, where
�̂τAB is a variance–covariance matrix of τ̂AB and can be calculated from �̂y
(a variance–covariance matrix of ŷ) according to the Delta method; then, the proce-
dure to assess the interaction between the factors A and B is summarized as follows:

1. Estimate thresholds ŷ and their variance–covariance matrix �̂y (covariances in
�̂y are zero if thresholds are independent as in Section 2). Then, H0 and H1 are

H0: (αβ)1·1 = (αβ)1·2 = · · · = (αβ)2·1 = · · · = (αβ)m·n = 0

and

H1: not H0.

2. Calculate τ̂AB. Then, H0 in step 1 is equivalent to

H0: τAB = 0.

Calculate �̂τAB, a variance–covariance matrix of τ̂AB, according to the Delta
method. Assume that τ̂AB is multivariately normal.
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3. Calculate τ̂ t
AB�̂−1

τABτ̂AB, which is chi-square distributed with (m − 1) × (n −
1) degrees of freedom under H0. Calculate the p-value corresponding to
τ̂ t

AB�̂−1
τABτ̂AB from the chi-square distribution.

4. Reject H0 if the p-value is smaller than the significant level (the interaction
between A and B is statistically significant), and do not reject H0 if the p-
value is larger than the significant level (the interaction between A and B is not
significant).

3.4. Example of Testing

3.4.1. Results for Testing
Color detection thresholds and their variances shown in Table 3 are used as data
for testing the main effects and the interaction. The thresholds are estimated as the
color differences in the OSA color space corresponding to 50% ‘yes’ responses with
logistic functions, although the number of trials and ‘yes’ responses are omitted.
The thresholds are plotted in Fig. 3. The experimental conditions (factors) are the

Table 3.
Thresholds estimated in a two-factorial experiment from the
constant stimuli method (synthetic)

Direction

+j −j

B
ac

kg
ro

un
d

co
lo

r (0, 2, 2) Threshold 1.96 3.57
Variance 0.58 0.62

(0, −2, 2) Threshold 3.95 1.23
Variance 0.74 0.65

(0, 2, −2) Threshold 2.35 2.10
Variance 0.77 0.79

Figure 3. Plots of the thresholds of Table 3. The error bars are the ±1 SEs.
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background colors in the OSA color space ((L, j , g) = (0, 2, 2), (0, −2, 2) and (0,
2, −2)) and the color shift directions (+j , −j ). The background color is identified
by the factor A, and the direction by the factor B.

3.4.2. Testing of the Main Effect
Here, we assess the main effect of the background color:

1. Under the assumption that thresholds are independent, from Table 3, the thresh-
old vector ŷ and its variance–covariance matrix �̂y are

ŷ =

⎡
⎢⎢⎢⎢⎢⎣

ŷ1·1
ŷ1·2
ŷ2·1
ŷ2·2
ŷ3·1
ŷ3·2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1.96
3.57
3.95
1.23
2.35
2.10

⎤
⎥⎥⎥⎥⎥⎦

(32)

and

�̂y =

⎡
⎢⎢⎢⎢⎢⎣

σ̂1·1 0 0 0 0 0
0 σ̂1·2 0 0 0 0
0 0 σ̂2·1 0 0 0
0 0 0 σ̂2·2 0 0
0 0 0 0 σ̂3·1 0
0 0 0 0 0 σ̂3·2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0.58 0 0 0 0 0
0 0.62 0 0 0 0
0 0 0.74 0 0 0
0 0 0 0.65 0 0
0 0 0 0 0.77 0
0 0 0 0 0 0.79

⎤
⎥⎥⎥⎥⎥⎦

. (33)

2. τ̂A is calculated from ŷ, equation (28) and equation (22), and is given as

τ̂A =
[

τ̂A1
τ̂A2

]
=

[
μ̂1·· − μ̂2··
μ̂1·· − μ̂3··

]
=

[ y1·1+y1·2
2

− y2·1+y2·2
2

y1·1+y1·2
2

− y3·1+y3·2
2

]
=

[
0.175
0.54

]
. (34)

From equation (7), G necessary for calculation of �̂τA (the variance–covariance
matrix of τ̂A) with the Delta method is

G =
[ ∂τA1

∂y1·1
∂τA1
∂y1·2

∂τA1
∂y2·1

∂τA1
∂y2·2

∂τA1
∂y3·1

∂τA1
∂y3·2

∂τA2
∂y1·1

∂τA2
∂y1·2

∂τA2
∂y2·1

∂τA2
∂y2·2

∂τA2
∂y3·1

∂τA2
∂y3·2

]

=
[

0.5 0.5 −0.5 −0.5 0 0
0.5 0.5 0 0 −0.5 −0.5

]
. (35)

�̂τA is calculated from G and equation (8) as

�̂τA = G�̂yGt =
[

0.6475 0.3
0.3 0.69

]
. (36)
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3. τ̂ t
A�̂−1

τAτ̂A, which is chi-squared with two degrees of freedom according to the
characteristic of a multivariate normal distribution, is calculated as

τ̂ t
A�̂−1

τAτ̂A = 0.430. (37)

According to the chi-square table with two degree of freedom, the p-value cor-
responding to this τ̂ t

A�̂−1
τAτ̂A is

p = 0.807. (38)

4. If the significant level is 5%, we cannot reject H0 according to p = 0.807 >

0.05, that is, we judge that the main effect of the background color is not statis-
tically significant.

The main effect of the direction can be assessed in the same way. The p-value
for the main effect of the direction is

p = 0.504. (39)

3.4.3. Testing of the Interaction
We assess the interaction between the background color and the direction as fol-
lows:

1. Under the assumption that thresholds are independent, threshold vector ŷ and
its variance–covariance matrix �̂y are shown in equations (32) and (33), respec-
tively.

2. τ̂AB is calculated from ŷ and equations (30) as

τ̂AB =
[

τ̂AB(1·1)

τ̂AB(2·1)

]
=

[
ŷ1·1 − ŷ1·2 − μ̂··1 + μ̂··2
ŷ2·1 − ŷ2·2 − μ̂··1 + μ̂··2

]

=
[

ŷ1·1 − ŷ1·2 − ŷ1·1+ŷ2·1+ŷ3·1
3 + ŷ1·2+ŷ2·2+ŷ3·2

3

ŷ2·1 − ŷ2·2 − ŷ1·1+ŷ2·1+ŷ3·1
3 + ŷ1·2+ŷ2·2+ŷ3·2

3

]

=
[−2.06

2.27

]
. (40)

From equation (7), G necessary for calculation of �̂τAB (the variance–
covariance matrix of τ̂AB) with the Delta method is

G =
[

∂γAB(1·1)

∂y1·1
∂τAB(1·1)

∂y1·2
∂τAB(1·1)

∂y2·1
∂τAB(1·1)

∂y2·2
∂τAB(1·1)

∂y3·1
∂τAB(1·1)

∂y3·2
∂γAB(2·1)

∂y1·1
∂τAB(2·1)

∂y1·2
∂τAB(2·1)

∂y2·1
∂τAB(2·1)

∂y2·2
∂τAB(2·1)

∂y3·1
∂τAB(2·1)

∂y3·2

]

=
[

0.667 −0.667 −0.333 0.333 −0.333 0.333
−0.333 0.333 0.667 −0.667 −0.333 0.333

]
. (41)

�̂τAB is calculated from G and equation (8) as

�̂τAB = G�̂yGt =
[

0.861 −0.402
−0.402 0.924

]
. (42)
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3. τ̂ t
AB�̂−1

τABτ̂AB, which is chi-squared with two degrees of freedom according to
the characteristic of a multivariate normal distribution, is calculated as

τ̂ t
AB�̂−1

τABτ̂AB = 7.249. (43)

From the chi-square table with two degrees of freedom, the p-value correspond-
ing to this τ̂ t

AB�̂−1
τABτ̂AB is

p = 0.027. (44)

4. If the significant level is 5%, we reject H0 according to p = 0.027 < 0.05, that
is, we judge that the interaction between the background color and the direction
in the color space is statistically significant.

4. Monte Carlo Simulations

In the proposed testing method, the normality of the estimated thresholds must be
assumed. Estimated thresholds, such as maximum likelihood estimators, are asymp-
totically normal as described above, that is, those thresholds should be normal when
trial numbers (and stimulus intensity levels) in the constant stimuli method are enor-
mous. The trial numbers in practical experiments, however, may not be sufficient
for such a threshold normality assumption. In addition, the accuracy of the SEs of
thresholds estimated from the maximum likelihood method is unclear, even if the
threshold normality assumption is valid.

In this section, using simple Monte Carlo simulations, we verify (1) the valid-
ity of the threshold normality assumption, (2) the accuracy of the estimated SEs
of thresholds on the maximum likelihood method, (3) the comparison of power
and type I error between the proposed method and the standard t-test and (4) the
comparison of power and type I error between the proposed method and the YKF
method. These issues should give some criterions regarding the kind of and the
amount of data required to be collected before applying our proposed method.

4.1. Normality Assumption of Thresholds

4.1.1. Method
We tested the normality of thresholds estimated from the constant stimuli method.
We used an ideal observer whose psychometric function can be described as a lo-
gistic function:

f (x) = 1 − λ

1 + exp((θ1 − x)/θ2)
. (45)

The parameter λ, which decreases the maximum probability of the observer’s re-
sponses, was introduced to include effects of involuntary response errors of ob-
servers (Wichmann and Hill, 2001a). The parameters of the psychometric function
were fixed at θ1 = 1.5, θ2 = 0.125 and λ = 0.01.

Although it has been demonstrated that different experimental conditions, such
as trial numbers and stimulus intensity selections, can affect accuracy and ef-
ficiency of threshold estimations (Foster and Bischof, 1991; Garcia-Perez and
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Table 4.
Values of the selected stimulus intensities for each CSI

No. Stimulus intensity

SI1 SI2 SI3 SI4 SI5 SI6 SI7

C
SI

#4

1 0 0.5 1 1.5 2 2.5 3
2 0.5 0.833 1.167 1.5 1.833 2.167 2.5
3 1 1.167 1.333 1.5 1.667 1.833 2
4 0 0.333 0.667 1 1.333 1.667 2
5 1 1.333 1.667 1 2.333 2.667 3
6 0.75 0.917 1.083 1.25 1.417 1,583 1.75
7 1.25 1.417 1.583 1.75 1.917 2.083 2.25

Figure 4. Psychometric function of an ideal observer employed in the simulation of Sections 4.1 and
4.2, and stimulus intensities selected in CSIs #1–#7 (see text). Values of the selected intensities are
shown in Table 4.

Alcala-Quintana, 2005), we employed only a few experimental conditions for sim-
plicity. We used seven different combinations of stimulus intensities (CSIs) around
the real threshold (1.5; the inflection point of the psychometric function) as shown
in Table 4. The psychometric function of the ideal observer and the selected stimu-
lus intensities in CSIs are plotted in Fig. 4. The trial number for each of the stimulus
intensities was between 6 and 40.

While estimating each threshold in the simulation, we collected ‘yes’ responses
from ideal observers as in practical psychophysical experiments, and then estimated
parameters of psychometric functions utilizing the psignifit toolbox (Wichmann
and Hill, 2001a, b), where the shape of the fitted psychometric function was lo-
gistic and the parameter lambda was fixed at 0.01. Variance–covariance matrices
of the parameters were calculated as inverse of Fisher information matrices derived
from the psignifit toolbox. As Wichmann and Hill (2001a) suggested, it should be
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preferable to use the psignifit toolbox without fixing the value of lambda so as to
minimize errors in the slope estimation. However, we fixed the value of lambda,
just for simplicity, so that the thresholds can be defined as stimulus values cor-
responding to the same ‘yes’ probability (74.25%). The number of repetition of
threshold estimation for each of the CSIs and trial number was 10 000. Thresholds
with Fisher information matrices of null were excluded from the following analysis.
After estimating all the thresholds, we calculated skewness and kurtosis from the
non-excluded thresholds as indices for normality of threshold estimations. These
simulations were conducted in Mathworks MATLAB 2007b.

4.1.2. Results
The histogram of estimated thresholds for the CSI #3 and trial number 40 is shown
in Fig. 5. This histogram seemed to be derived from a normal distribution. Figure 6

Figure 5. Histogram of estimated thresholds under CSI #3 and trial number for each stimulus intensity
of 40.

(a) (b)

Figure 6. (a) Skewness and (b) kurtosis of 10 000 thresholds estimated under the CSI #2 in the simu-
lation. Dotted lines represent skewness and kurtosis for a normal distribution.
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shows the skewness and kurtosis for thresholds of the CSI #2. It is clear that both
the skewness and the kurtosis suddenly became stable for trial numbers above a
certain value. Indeed, mean values of skewness and kurtosis for small trial numbers
largely varied by repeating the same simulations. This tendency was also observed
in other CSIs. Therefore, to estimate trial numbers necessary for stable skewness
and kurtosis, we arbitrarily defined the ‘critical trial number’ for each CSI as fol-
lows. We used the absolute differences in skewness and kurtosis between adjacent
trial numbers (e.g., 23 and 24, or 14 and 15), which we simply call ‘adjacent dif-
ference’, to define the critical trial number. First, ‘mean +1 standard deviation’ of
all of the adjacent differences was defined as a ‘criterion difference’ in each CSI.
Second, a trial number, for trial numbers larger than which the adjacent differences
do not exceed the criterion difference, was defined as the critical trial number.

Skewness and kurtosis for trial numbers larger than the critical numbers for all
CSIs are shown in Fig. 7(a) and (b), and those with smaller y-axis scales are shown
in Fig. 7(c) and (d) ((a) and (c), and (b) and (d) show identical data, respectively).
Both the skewness and the kurtosis were much larger for CSI #1 than the other
CSIs. This suggests that distribution of the threshold estimations for CSI #1 dif-
fers from that for a normal distribution. These results should arise from the fact
that the number of stimulus intensities between the intermediate (about 10–90%)
‘yes’ probability was only one for CSI #1, that is, the sampling of stimulus inten-
sities was too coarse compared to the slope of the psychometric function, leading
to inaccurate threshold estimation. In fact, the other finer samplings (#2, 5, 6 and
#3, 6, 7) yielded threshold distributions much closer to normal distributions based
on skewness and kurtosis. Therefore, multiple stimulus intensities should be allo-
cated around intermediate ‘yes’ response probabilities to estimate thresholds with
stable normality. In addition, skewness and kurtosis came closer to the ideal val-
ues of normal distribution (0 and 3, respectively) as trial numbers increased for all
CSIs, suggesting that more trial numbers result in better normality of the estimated
thresholds, as expected from the asymptotic normality.

Meanwhile, the skewness tended to be slightly biased from 0 depending on the
CSIs, indicating slight deviation from the normal distribution. In a similar man-
ner, the kurtosis also tended to be slightly larger than 3, the value corresponding
to a normal distribution. Even the finest sampling of stimulus intensities (#3, 6 and
7) yielded slight deviation from normality in skewness and kurtosis. The Jarque–
Bera test also rejected the normality of the distribution of the simulated thresholds
(p < 0.01 for all conditions), although this rejection is easily expected from the
huge sample data in the simulation leading to detection of slight difference from
normality. We assume, however, that these thresholds are almost normally dis-
tributed, at least for testing purpose, because the deviation of those skewness and
kurtosis values from normal distribution was very small and they were stable for
more than the critical trial numbers. Indeed, the rates of estimated thresholds falling
in the 5% rejection regions defined under normality assumption were almost the
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(a) (b)

(c) (d)

Figure 7. (a) Skewness and (b) kurtosis for trial numbers larger than the critical trial number (see
text). (c) Skewness and (d) kurtosis except for the CSI #1 (data is identical to (a) and (b)). This figure
is published in colour in the online version.

same as those falling in the 5% rejection regions based on actual threshold distribu-
tions themselves (data not shown).

The critical numbers for all CSIs are shown in Fig. 8. These critical numbers
were smaller for #3, 6, 7, followed by #2, 4, 5. The critical number for #1 was the
largest. In addition, the critical number was the smallest for #2 between #2, 4 and
5, and for #3 between #3, 6 and 7. These results also support the suggestion that
stimulus intensity sampling, which is fine and symmetric around the threshold, is
more desirable for threshold estimation with stable normality.

In summary, we conclude that the thresholds are almost normally distributed
for testing purpose only if the trial number is sufficiently large and the stimulus
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Figure 8. Critical trial numbers calculated for skewness and kurtosis.

intensity selection is appropriate. To achieve stable threshold normality, multiple
stimulus intensities should be located around the intermediate ‘yes’ probabilities,
and the trial numbers in each stimulus intensity should be more than 20, leading
to typically about 140 trials in total. However, it should be noted that ‘sufficient’
trial numbers strongly depend on the CSIs and should be larger for alternative
forced-choice design (McKee et al., 1985). The proposed method can be applied
for thresholds estimated with appropriate stimulus intensities and sufficient trial
numbers.

4.2. Estimation of SEs of Thresholds

4.2.1. Method
We examined the accuracy of the SEs of thresholds estimated from the maximum
likelihood method by analyzing the simulation results described in Section 4.1. The
accuracy of SE estimation of thresholds is directly linked to the accuracy of sta-
tistical testing, even if the threshold normality assumption is valid. Although the
accuracy of SE estimation has been described in some other studies (e.g., Foster
and Bischof, 1991), we retested it for more conditions with more repetitions of the
Monte Carlo simulations.

We defined the standard deviation of estimated thresholds (e.g., the standard de-
viation of threshold samples in distributions of Fig. 5) as an ‘actual SE’ for each
trial number and CSI. Meanwhile, a standard deviation of a threshold estimated
from a Fisher information matrix on each threshold estimation was defined as an
‘estimated SE’. We calculated means and standard deviations of ‘estimated SEs’
from 10 000 estimations for each condition, and compared them with the actual SE.

4.2.2. Results
Figure 9 illustrates the real and estimated SEs as a function of the trial number
for CSI #2. The estimated SEs approached the real SEs as trial numbers increased,
as expected from asymptotic normality of maximum likelihood estimators. In addi-
tion, as demonstrated for skewness and kurtosis, the estimated SEs abruptly became
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Figure 9. Real SE and estimated SE calculated under CSI #2 as a function of trial number for each
stimulus intensity. Black and orange lines represent real and estimated SEs, respectively. Error bars
represent standard deviations of estimated SEs. This figure is published in colour in the online version.

(a) (b)

Figure 10. (a) Real and Estimated SE under CSIs #2, 3, 4 and 6 for trial numbers larger than critical
number (see text). Dotted lines show real SEs, and solid lines show estimated SEs. Plot colors corre-
spond to CSIs. (b) Difference ratio between real and estimated SEs ((estimated SE − real SE)/real
SE). This figure is published in colour in the online version.

stable for trial numbers larger than a certain number. These tendencies were also ob-
served in other CSIs. To investigate the number of trials required to yield stable SE
estimations, we arbitrarily defined a ‘critical trial number’ also for estimated SEs;
for all the trial numbers larger than the critical trial number, differences of estimated
SEs from real SEs do not exceed 25% of real SEs.

The estimated SEs for trial numbers that exceed the critical trial numbers are
shown in Fig. 10(a), and the difference ratios between the estimated and real SEs
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((Estimated SE − Real SE)/Real SE) are shown in Fig. 10(b) for CSIs #2, 3, 4
and 6. Again, it is clear that the estimated SEs came closer to the real SEs as the
trial number increased. However, for CSIs #2 and 5, the critical trial number and
the difference between the real and estimated SEs were larger than that for CSIs #3
and 6. Moreover, we could not find a critical trial number for #1 within the tested
trial numbers. These results suggest the necessity of appropriate stimulus intensity
selection for usable SE estimation.

Under conditions with large trial numbers, however, the estimated SEs tended
to be slightly less than the real SEs. Foster and Bischof (1991) have also reported
this tendency. This bias is undesirable for statistical testing. However, the differ-
ence between the real and estimated SEs is not large (typically less than 5%). In
addition, it was reported that even the bootstrap method could not obviate this es-
timation bias (rather, bias of bootstrap estimates of SEs tends to be larger than that
of asymptotical estimation for large samples; Foster and Bischof, 1991).

Therefore, we consider that these SEs estimated from the maximum likelihood
method are not perfectly ideal but acceptable as statistics for hypothesis testing if
the trial number is sufficiently large and the stimulus intensity selection is appro-
priate (multiple stimulus intensities corresponding to intermediate ‘yes’ response
probabilities exist). The effects of this SE estimation bias on hypothesis testing are
also discussed in the next subsection.

4.3. Comparison of Proposed Method with t-Test and ANOVA

The previous subsections suggest that the normality assumption of thresholds and
accuracy of SE estimations are acceptable for hypothesis testing in the proposed
method. Meanwhile, differences between the multiple thresholds estimated from
the constant stimuli method can also be tested with the t-test or ANOVA by repeat-
edly measuring the threshold. In this subsection, we compare the power and type I
error of the proposed method with those of the t-test using Monte Carlo simulations.

4.3.1. Methods
We simulated two ideal observers whose psychometric functions were defined by
logistic functions, and tested the significant difference between the thresholds of
the two observers with the proposed method and the t-test. The parameters of the
two psychometric functions were identical to those employed in Sections 4.1 and
4.2 except for values of θ1; one was 1.45 and the other was 1.55. In particular, they
were different only in their thresholds (horizontal positions). The seven kinds of
CSIs employed were identical to those in Sections 4.1 and 4.2.

In the simulation, the thresholds for the two observers were estimated, and then
the threshold difference was statistically tested. When using our proposed method,
the number of the observer’s responses at each stimulus parameter was 64, that is,
448 responses were used in total to estimate a threshold. This trial number is much
more than the critical trial number of estimated SE for each of the CSIs except for
#1, where we could not estimate a critical trial number. After measuring thresholds
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for the two observers, the difference between these two thresholds was tested using
our proposed method with a significance level of 0.05.

Meanwhile, for the t-test, the number of responses at each stimulus parameter
was eight; that is, 56 responses were used in total to estimate a threshold. How-
ever, we measured eight thresholds for each condition by repeating this procedure.
Therefore, the total number of observer’s responses for eight threshold estimations
was 448, the same as that obtained when using our proposed method. After estimat-
ing eight thresholds in each condition, the difference between the threshold means
for the two conditions was tested with the t-test with a significance level of 0.05.

The test was repeated 10 000 times for each of the testing methods. The ratio of
the number of ‘rejection of null hypothesis (i.e., the threshold difference between
the two conditions was significant)’ conclusions to the total number of tests was
defined as the power of the test. The power was calculated for each testing method.

4.3.2. Results and Discussion
The calculated powers are shown in Fig. 11(a). The powers vary with the stimulus
parameter pair, as expected from the SEs of the thresholds estimated in Section 4.2.
However, the power of the proposed method is consistently larger than that of the
t-test for all the CSIs. This indicates that our proposed method may detect a signif-
icant difference between thresholds better than the t-test.

We performed an additional simulation to compare the type I errors between the
two testing methods. The thresholds in the two psychometric functions were 1.5,
and a ratio of the number of ‘reject null hypothesis’ conclusions to the total number
of the tests was defined as a type I error in this simulation. The other simulation
methods were identical to those of the power simulation. The derived type I errors
are shown in Fig. 11(b). Although both the type I errors for the CSI #1 were much

(a) (b)

Figure 11. (a) Power and (b) Type I error of the t-test and the proposed method with significant level
of 0.05. Black bars represent results of the proposed method, and gray bars represent results of the
t-test.
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(a) (b)

Figure 12. (a) Power and (b) Type I error of the t-test with significant level of 0.05 and of the proposed
method with significant level of 0.04.

smaller than 0.05, the significance level in the simulation, those for the other CSIs,
were nearly equal to 0.05. However, the type I errors of the proposed method tended
to be slightly larger than 0.05. This can be easily expected owing to the fact that the
estimated SEs of thresholds were slightly smaller than the real SEs under large trial
numbers, as shown in Section 4.2. These results raise a possibility that the larger
power of the proposed method originates just from its larger type I error.

To test this possibility, we conducted a similar simulation in which the signifi-
cance level was decreased to 0.04 only for the proposed method. The powers and
type I errors are shown in Fig. 12(a) and (b), respectively. In the figure, the type I er-
rors are nearly equal in the two methods. Nevertheless, the powers were still larger
for the proposed method as seen in Fig. 11(a). This dismisses the above possibility,
but instead indicates that the proposed method is more efficient than the t-test for
testing power. Thus, the proposed method should be more suitable than the t-test or
ANOVA, because it can efficiently test the threshold differences for the cases where
a sigmoid model can be fitted well to the observer’s data and where the number of
trials is sufficiently large.

In the above simulation, the sample number used for testing with the t-test was
only eight. This small sample number might cause the efficiency of the t-test to
be less than that of the proposed method. Therefore, we again performed a similar
simulation for the CSI #1, except that the trial number for each stimulus intensity
was either 32, 64, 128 or 256, corresponding to 4, 8, 16 or 32 threshold samples for
the t-test, respectively, when eight trials for each stimulus intensity were used for
each threshold estimation. In the results (data not shown), the power of the t-test
increased with the increase in the number of threshold samples as expected. How-
ever, the power of our proposed method also abruptly increased with the increase
in trial numbers, and rather the difference in power between the two methods in-
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creased with an increase in trial numbers. In addition, the power of the t-test was
higher for less threshold samples by increasing a trial number for each threshold
estimation without changing the total trial number (e.g., for a total trial number of
256 for each stimulus intensity, trial numbers for each threshold estimation can be
increased from eight to 16 or 32, leading to numbers of threshold samples from 32
to 16 or 8), but still remained smaller than the proposed method.

Similarly, the yes/no situations in our simulation might tend to benefit the pro-
posed method compared to two-alternative forced choice (2AFC) situations, be-
cause rise in lower asymptote of psychometric functions (e.g., 0.5 in 2AFC situa-
tions) tends to yield inefficiency of maximum likelihood estimators in psychometric
functions (McKee et al., 1985). We again performed simulations with ideal ob-
servers whose lower asymptote of psychometric functions was 0.5 instead of 0. In
the results (data not shown), the power for asymptote 0.5 was lower than that for 0,
as expected for both the two testing methods. However, even in this situation, the
power of the proposed method was larger than the t-test in all the CSIs, while type
I error was similar to that observed in Fig. 11. The results of these additional simu-
lations suggest that the proposed method is superior to the t-test in their power in a
wide range of conditions in stimulus intensities or experimental methods.

Although we tested only the difference between two thresholds here, we would
derive similar results if we tested the difference between more than two thresholds
using the proposed methods and the ANOVA. As stated above, some psychophys-
ical studies tested the difference between multiple thresholds derived from the
constant stimuli method with the t-test or ANOVA by considering each observer’s
threshold as a sample. However, a sigmoid model should very well fit the data col-
lected from different observers in many cases, unless the observer’s psychometric
functions are not largely different. In such cases, our method may detect the signif-
icance of threshold difference more efficiently than the t-test or ANOVA.

Note that the type I errors of the proposed method were slightly larger than the
significant level. This must be because of the small estimation of SEs of thresholds.
This property is undesirable as a statistical testing method. However, as stated in
Section 4.2, Foster and Bischof (1991) showed that the SEs estimated from the
bootstrap method were less than those estimated from the probit analysis when
the trial number was sufficiently large. Their simulation results suggest that the
bootstrap estimates of SEs cannot improve type I error for large trial numbers, but
may possibly worsen it. Again, we argue that if you utilize statistics of psychometric
functions for statistical testing, it is better to use maximum likelihood estimates only
when the trial number is sufficiently large. In any case, it should be noted that the
results should not be conservative but rather slightly ‘liberal’.

4.4. Comparison of the Proposed Method with the YKF Method

The previous subsection demonstrated that our proposed method is superior to the
t-test with regards to power, especially when stimulus intensity selection is appro-
priate (this leads to an efficient estimation of SEs from the maximum likelihood
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method). As described in the Introduction, Yssaad-Fesselier and Knoblauch (2006)
proposed a novel method to evaluate threshold differences derived from psycho-
metric functions. In this section, we compare power and type I error between the
proposed method and the YFK method.

4.4.1. Methods
The simulation procedures were identical to those in Section 4.3, except that the
t-test was replaced by the YFK method. The YFK method was performed with the
PAL_PFLR_ModelComparison function in Palamedes Toolbox (Prins and King-
dom, 2009). We again evaluated the efficiency in testing differences between the
two thresholds derived from two different ideal observers (the thresholds were 1.45
and 1.55 for power comparison, and both were 1.5 for type I error comparison). In
the PAL_PFLR_ModelComparison function, the two sets of observers’ responses
were fitted with two different models of psychometric functions. In one model, the
two psychometric functions had respective threshold parameters, and in the other
they had only one common threshold parameter, corresponding to the null hypoth-
esis. After fitting the functions, likelihood ratio between these two models were
calculated. Because this likelihood ratio is chi-squared with one degree of freedom,
the p-value was calculated from the likelihood ratio based on the chi-square distri-
bution. Simulations were performed both in the yes/no situations (lower asymptote
of the psychometric functions was 0) and the 2AFC situations (lower asymptote
was 0.5).

4.4.2. Results and Discussion
The simulated power and type I error for both the proposed method and the YFK
method in the yes/no situations are shown in Fig. 13. It is clear that these two meth-

(a) (b)

Figure 13. (a) Power and (b) Type I error of the YKF method and the proposed method with significant
level of 0.05. Black bars represent results of the proposed method, and gray bars represent results of
the YKF method.
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ods yielded almost equal power and type I error. These results suggest that these two
methods are substantially identical in their efficiency when appropriate stimulus in-
tensities and trial numbers are supplied. Only for the CSI #1, power is a little higher
for the YFK method than that for the proposed method. This may be attributed to
unstable estimation of SEs as expected from the results of the Section 4.2, where
we could not find a critical trial number for SE estimation in the stimulus inten-
sity combination #1; our method is based on the Delta method, which is, in turn,
based on asymptotic normality of maximum likelihood estimators, and therefore,
the Delta method may accentuate the effects of the inefficient estimated SEs by
combining multiple SEs. However, the power of the YKF method for #1 was also
small, and power difference from the proposed method was not sufficiently large.

The results for the 2AFC situations (data not shown) were quite similar to the
yes/no situations; the power and type I error were almost equal for the two methods
except for the CSI #1, although general efficiency was lower than that for the yes/no
situations. We assume that testing results of the two methods for different stimulus
conditions behave similarly, because both of them rely on the asymptotic theory of
the maximum likelihood method in the simulation. Therefore, again it should be
very important to adopt appropriate stimulus intensities and trial number when ap-
plying these methods. It should be noted that in the YKF method, as implemented
in the Palamedes Toolbox, the bootstrap re-sampling of threshold difference param-
eters or likelihood ratios may help increase its efficiency to some extent when trial
numbers for threshold estimation are small.

We conclude that these two methods, our proposed method and the YKF method,
are substantially equal in their efficiency when appropriate stimulus intensities and
trial numbers are adopted in experiments with constant stimuli methods, although
the YKF method can be a little more efficient than our proposed method when
accuracy of SE estimation is not sufficient.

5. General Discussion

We proposed a new statistical significance testing method to assess differences be-
tween the thresholds estimated from the constant stimuli method using the Delta
method and the Mahalanobis squared distance. Although thresholds can be accu-
rately estimated using the constant stimuli method, the differences of the thresholds
have been often assessed by less efficient statistical testing methods (see Section 1).
The statistical testing method proposed in this paper can efficiently assess differ-
ences of thresholds estimated from the constant stimuli method, because it utilizes
all the data used for the maximum likelihood estimations, though the thresholds
must be assumed to be normally distributed. The proposed method can be utilized
in a similar way as the t-test and the ANOVA for the adjustment method. In addi-
tion, it also has other advantages; for example, it can assess effects of experimental
condition differences on thresholds in individual results, it does not require the as-
sumption of equality of variance, and its testing procedure is simple. Moreover, the
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proposed method can be easily modified and applied to the difference of psycho-
metric function slopes between the different experimental conditions by evaluating
the slope parameters of a psychometric function model with similar procedures (al-
though not described in detail here).

However, note that our method requires appropriate stimulus intensity selection
and sufficient trial numbers as expected from asymptotic normality of maximum
likelihood estimators, considering the normality of estimated thresholds and accu-
racy of SE estimation of thresholds. Normality assumption can be achieved with a
relatively small number of trials; 150 trials can be sufficient (Fig. 7, except for the
CSI #1). However, many more trials are required for accurate SE estimation. The
required trial number critically depends on the selection of the stimulus intensity; if
only one stimulus intensity were included within the intermediate (10–90%) ‘yes’
probabilities, many trial numbers may be required, whereas, if several (5–7) stim-
ulus intensities were included in intermediate ‘yes’ probabilities, 100 trials may be
sufficient from our simulations. Irrespective of the number of intensities, fewer trial
numbers tend to yield larger estimated SEs, leading to less efficient results of the
proposed method (but still more efficient than the t-test). Although this lower ef-
ficiency leads to a smaller type I error and testing power, this does not eliminate
the eligibility of the proposed method. Ignoring this inefficiency, only threshold
normality should be concerned for eligibility of the proposed method.

There are other possible methods to test the statistical significant differences be-
tween the thresholds estimated by the constant stimuli method, such as applying
the t-test or ANOVA by measuring multiple thresholds. One can estimate multiple
thresholds through the constant stimuli method by estimating a threshold, for ex-
ample, from the data of each experimental session if there are multiple sessions. In
this case, the t-test and ANOVA could be used to assess the significant difference
between thresholds of different conditions within an observer. However, the power
of this method is less than that of our proposed method for most of the stimulus
intensity and trial number conditions, as indicated in our simulations. Furthermore,
it will require many trials to derive multiple thresholds from the constant stimuli
method. Therefore, it is more appropriate and efficient to use our method rather
than estimating multiple thresholds from the constant stimuli method and then ap-
plying the t-test or ANOVA. If you prefer the t-test or ANOVA, it may be more
efficient to measure thresholds from other psychophysical procedures, for example,
adaptive staircase procedures such as the QUEST (Watson and Pelli, 1983).

Recently, the bootstrap method has received a lot of attention for evaluating vari-
ances of the threshold estimations (Efron, 1982; Wichmann and Hill, 2001a, b). It
has been used in many psychophysical studies (Allen et al., 2003; Carlson et al.,
2006; Khang et al., 2003) for the construction of confidence intervals for thresholds.
The procedure for the bootstrap method is very simple, and it is very powerful for
estimating confidence intervals of a variety of statistical values, such as the mean
and median, without calculating complex parameters of statistical distributions. Be-
cause an assumption of a statistical distribution is not required for the bootstrap



122 T. Nagai et al. / Seeing and Perceiving 24 (2011) 91–124

method, this method is more appropriate than our proposed method when the num-
ber of trials is small and the threshold normality assumption is implausible. It has
been indicated that estimation of threshold variances from the bootstrap method is
more robust than that from the asymptotic normality assumption for small data sets
(Foster and Bischof, 1987, 1991). The bootstrap method is very compelling for its
robustness against the number of experimental samples and its flexibility is hardly
affected by the assumption of certain statistical distributions. However, standard
error estimation by the bootstrap method is not always desirable for our method.
Variance estimation from the bootstrap method is less accurate than that from the
asymptotic normality analysis with large sample sizes, such as 300–900 trials for
each threshold (Foster and Bischof, 1991). Therefore, it is more efficient to esti-
mate the standard error of the threshold on the basis of asymptotic normality as in
our proposed method, rather than using the bootstrap method, if the data amount is
sufficient for the asymptotic normality assumption.

The YKF method is another valuable method for testing threshold differences. In
the YKF method, parameters corresponding to threshold differences between dif-
ferent experimental conditions are included in the model of psychometric functions.
This approach makes it possible to test not only threshold differences, but also other
different features in psychometric function models by defining parameters of inter-
est in the models. The efficiency of our method and the YKF method is substantially
equal in most of the stimulus intensity selections and trial numbers, as demonstrated
in our simulation (Section 4.4). Thus, one can choose either of these two methods
for testing threshold differences in practical psychophysical experiments, because
both these methods should yield substantially equal results (e.g., the p-values cal-
culated from the two methods for the data in Table 1 is almost equal). However, the
YKF method can be a little more efficient than our method when SE estimations
are less trustworthy, although in this case the efficiencies are less than satisfactory
for both methods. Therefore, only for thresholds with small trial numbers, it can
be desirable to use the YKF method and apply bootstrap re-sampling to evaluate
variance of the parameters used for testing.

In conclusion, our method can be used for statistical significance testing of the
difference between the thresholds estimated from the constant stimuli method. In
addition, our method has larger power than the t-test or ANOVA in which each
threshold is considered just as a sample, and substantially equal power as the YKF
method for appropriate stimulus selections and sufficient trial numbers. Although
large trial numbers and appropriate stimulus intensity selection are necessary when
applying our method, it should be a very useful tool to analyze and interpret exper-
imental results from the constant stimuli method.
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Appendix

A.1. Matlab scripts and Excel macro

We created Matlab scripts and Excel macros to perform the statistical testing pro-
posed in this paper. Those files can be downloaded at http://www.uchikawa.ip.titech.
ac.jp/pgs.html.

They perform statistical significance tests for thresholds measured in a one- or a
two-factor experiment (these tests are similar to one-way and two-way ANOVAs),
and multiple comparison for thresholds measured in a one-factor experiment.

Estimations of thresholds and their SEs by a maximum likelihood method are
required before testing the files, because they use thresholds and their SEs as their
inputs. The explanations about how to use the files may also be downloaded from
the same website.


