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The visual system needs to discount the influence of an illuminant to achieve color constancy. Uchikawa et al.
[J. Opt. Soc. Am. A29, A133 (2012)] showed that the luminance-balance change of surfaces in a scene contributes
to illuminant estimation; however, its effect was substantially less than the chromaticity change. We conduct three
experiments to reinforce the previous findings and investigate possible factors that can influence the effect of
luminance balance. Experimental results replicate the previous finding; i.e., luminance balance makes a small,
but significant, contribution to illuminant estimation. We find that stimulus dimensionality affects neither the
degree of color constancy nor the effect of luminance balance. Unlike chromaticity-based color constancy, chro-
matic variation does not influence the effect of luminance balance. It is shown that luminance-balance-based
estimation of an illuminant performs better for scenes with reddish or bluish surfaces. This suggests that the
visual system exploits the optimal color distribution for illuminant estimation [J. Opt. Soc. Am. A 29, A133
(2012)]. © 2016 Optical Society of America

OCIS codes: (330.1690) Color; (330.1720) Color vision.
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1. INTRODUCTION

When an illuminant changes, the chromaticity and luminance
of a surface in a scene accordingly change. However, our per-
ception of surface color does not change significantly. This vis-
ual property, which is known as color constancy, allows us to
identify objects under different illuminants. To achieve color
constancy, the visual system needs to discount the influence
of the illuminant. However, such a subtraction is mathemati-
cally impossible because light entering our eyes is the product of
the surface spectral reflectance and the illuminant spectral com-
position. Therefore, in some sense, the visual system needs to
estimate the illuminant by exploiting various cues in the scene.
Although there has been a substantial amount of research into
color constancy, as recently summarized in review papers [1–3],
its mechanism remains unclear.

Many potential algorithms have been proposed. One of the
simplest solutions is retinal adaptation, known as von Kries
adaptation [4]. A similar cone-based mechanism is Ives trans-
formation [5], which considers cone signals globally across the
retina, whereas von Kries adaptation acts locally. Although
these low-level processes often provide sufficient cues for
color constancy, the contributions of the higher-level visual
process have also been reported [6]. Therefore, it is generally
acknowledged that color constancy is not a specific level

process; several types of visual processes appear to underlie it
in complex ways.

Another common approach to color constancy is to charac-
terize the distribution of colors in a natural scene under various
illuminants. Foster and Nascimento [7] pointed out that an
illuminant change does not largely affect the spatial cone ratio;
therefore, the visual system can use the invariant signal regard-
less of illuminant change, which might provide the basis of
color constancy. Interestingly, unlike many other color con-
stancy algorithms, this method allows the visual system to dis-
tinguish between the material change and the illuminant
change without illuminant estimation.

It is known that brighter surfaces are better cues to estimate
the illuminant than darker surfaces [8]. In its extreme form, a
specular highlight would be particularly helpful because they
directly convey an illuminant to the eye [9]. However,
Fukuda and Uchikawa [10] found that colors appearing in
the aperture-color mode do not significantly contribute to
the degree of color constancy, suggesting that the visual system
primarily exploits the colors in the surface-color appearance to
estimate an illuminant.

In addition to these local cues interspersing in the scene,
spatially global cues also seem to be reliable because the illu-
minant affects surfaces in a wide range of the scene. It is well

A214 Vol. 33, No. 3 / March 2016 / Journal of the Optical Society of America A Research Article

1084-7529/16/03A214-14$15/0$15.00 © 2016 Optical Society of America

http://dx.doi.org/10.1364/JOSAA.33.00A214


known that simply taking a spatial average of scene chromatic-
ity often provides a sufficient cue to estimate the illuminant
under a constraint of the gray world hypothesis [11].
However, this method fails when the gray world hypothesis
fails, and it is actually common that the scene is not gray
[12]. As this acknowledged model implies, there has been a
historical bias toward exploiting chromaticity to estimate the
illuminant even though an illuminant change should also affect
the luminance of surfaces in a scene.

One of the long-standing mysteries in the color constancy
field has been how the visual system distinguishes a reddish
scene under a neutral illuminant from a neutral scene under
a reddish illuminant when both produce exactly same mean
chromaticity. This problem was sharply focused on by Golz
and MacLeod [13], who showed that surfaces with higher red-
ness tend to have higher luminances under a reddish illumi-
nant, resulting in a positive correlation between redness and
luminance. They empirically showed that the visual system
can exploit this correlation between luminance and redness
to solve the ambiguity of mean chromaticity. The important
implication shown by their study is that the luminance plays
a significant role in illuminant estimation.

The optimal color, more precisely termed the optimal sur-
face, has at most two abrupt spectral transitions between 0%
and 100% reflectance, as shown in Fig. 1. The luminance of
the optimal color is the maximum in colors with the same chro-
maticity. Therefore, the distribution of all optimal colors with
different λ1 and λ2 visualizes a gamut of surface colors under a
given illuminant (also known as the MacAdam’s limit [14,15]).
Figure 2(a) shows how this theoretical gamut changes relative to
illuminant changes in the MacLeod–Boynton (MB) chromatic-
ity diagram [17]. Each tiny dot indicates one optimal color.
The peak of each distribution corresponds to the optimal color
with 100% reflectance across all wavelengths (perfect reflecting
diffuser), and thus indicates the white point of that illuminant.
The cone-like shape of these optimal color distributions does
not change dramatically across illuminants. However, their
peaks are shifted toward the white point of each illuminant.
This produces regions where optimal color distributions do
not overlap. Thus, if a scene contains colors in the region where
distributions do not overlap, it could provide a cue to estimate
the illuminant. For instance, if a scene contains a saturated
bright blue surface, the illuminant in the scene is unlikely
to be reddish. A similar idea using the illuminant gamut has
also been proposed [18].

To assess the feasibility of this notion, Fig. 2(b) shows the
chromaticity versus luminance distributions of 574 natural

objects [19] with optimal color distributions under three illu-
minants. Similar to optimal color distribution, the shape of the
natural object distribution does not collapse when the illumi-
nant changes; the natural object distribution is similar to the
optimal color distribution. Therefore, the visual system might
be able to internalize the shape of the optimal color distribution
by exposure to the natural object distribution under various
illuminants, such as those that occur in daily life.

In addition, a previous study has shown the relation between
the luminous threshold and luminance of the optimal color,
suggesting that the visual system knows this theoretical limit
of the surface color [20]. If this is the case, the visual system
would be able to estimate an illuminant by choosing the best-fit
optimal color distribution for a given scene distribution (opti-
mal color hypothesis).

Fig. 1. Example of optimal color, which has at most two abrupt
spectral transitions between 0% and 100% reflectance.

(a)

(b)

Fig. 2. (a) 3D representation of the optimal color distribution under
three different illuminants and (b) 2D representation of optimal color
distribution. 574 natural objects are plotted in (b). The luminance and
chromaticity of optimal color were calculated by changing λ1 and λ2 in
Fig. 1 in 4 nm steps under three illuminants (3000, 6500, and
20,000 K). We used Stockman and Sharpe cone fundamentals [16]
for the calculation of cone responses.
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Uchikawa et al. [21] conducted experiments to test this hy-
pothesis (Fig. 3). On the left, three optimal surfaces are placed
under a 6500 K illuminant. Thus, they are within the optimal
color distribution of 6500 K. However, when the luminance
balance of scene surfaces changes, some surfaces may exceed
the optimal color distribution of 6500 K as shown on the right.
If that occurs, the visual system needs to pick the best-fit color
temperature so that all surfaces are within the limit of surface
colors. In addition to this luminance shift condition with con-
stant chromaticity across illuminants, Uchikawa et al. [21] also
investigated the chromaticity shift condition with constant lu-
minance across illuminants and the luminance and chromatic-
ity shift condition. The results showed that the optimal color
hypothesis sufficiently worked for a chromaticity shift and both
luminance and chromaticity shift conditions. More impor-
tantly, they found that a luminance-balance change by itself
could contribute to illuminant estimation.

Although the importance of luminance balance for estimat-
ing an illuminant was demonstrated, its effect was significantly
smaller than that of a chromatic shift; thus, the results partially
supported the hypothesis. In addition, only two observers par-
ticipated in their experiments; therefore, the results might be
observer-dependent. The present study conducted three experi-
ments to reinforce the previous findings. The goal of the experi-
ments was to identify the possible reason for the small
luminance shift effect and extend its feasibility for different sit-
uations.

Since the experiments reported by Uchikawa et al. [21] em-
ployed 2D hexagons as surrounding stimuli, it is possible that
the observers could not separate a surface and an illuminant
sufficiently. In fact, some studies have reported the effect of
the scene or stimulus dimensionality on color constancy
[22]. Therefore, in Experiment 1, we tested the effect of stimu-
lus dimensionality on luminance-balance-based illuminant es-
timation. However, the results showed little effect.

In Experiment 2, we assumed that the relatively smaller lu-
minance shift effects might come from the small number of
colors (six) used for surrounding stimuli. In terms of the opti-
mal color hypothesis, a greater number of surrounding colors
might make the shape of the scene distribution clearer and,
thus, help the visual system pick the best-fit optimal color dis-
tribution more accurately. To compare the effect of the number
of surrounding colors, we used a 60-color condition and the

original six-color condition. The result showed that a larger
number of surrounding colors enhances the effect of chroma-
ticity shift but not luminance shift. In addition, the effect of
luminance shift was still substantially smaller than that of chro-
matic shift.

As shown in Figs. 2(a) and 2(b), optimal color distributions
are separated primarily at high redness or high blueness regions.
Thus, optimal colors with high purity have largely different lu-
minances under different illuminants. Consequently, we con-
sidered that the scene must contain high redness or high
blueness surfaces to estimate reddish (3000 K) or bluish
(20,000 K) illuminants based only on the luminance balance.
Therefore, we assumed that a scene primarily consisting of red-
dish and bluish surfaces could enhance the effect of luminance
balance, and employed a red–blue dominant scene, a green–yel-
low dominant scene, and a balanced scene in Experiment 3. As
expected, the results showed that the effect of luminance bal-
ance is greater for the red–blue dominant scene than for the
green–yellow dominant scene.

2. GENERAL METHODS

A. Apparatus

All experiments were conducted in a dark room. Stimuli were
presented on a CRT monitor (Sony, GDM-520, 19 inches,
1600 × 1200 pixels) controlled by PC (Epson, MT7500) with
14-bit intensity resolution for each phosphor allowed by a
ViSaGe (Cambridge Research System). The monitor was
gamma-corrected using the Color-CAL colorimeter
(Cambridge Research System) and spectrally calibrated with
a spectral radiometer (PR-650, Photo Research Inc.). The
observer was situated 114 cm from the CRT monitor, and
viewed stimuli binocularly with his/her head supported by a
chin rest.

B. Stimuli

Figure 4 shows an example of the experimental stimuli consist-
ing of 61 hexagons (cubes were used for the 3D condition in
Experiment 1). The center hexagon was used as a test field, and
its chromaticity and luminance were adjustable. The others
were employed as the surrounding stimuli. The methods used
to manipulate the chromaticity and luminance of each hexagon
are provided in the subsequent descriptions of each experiment.

Fig. 3. Key idea for experiments to test the optimal color hypoth-
esis. On the left, each surface is within the optimal color distribution of
6500 K. However, on the right, a reddish surface exceeds the limit of
6500 K due to the luminance-balance change; thus, the visual system
could estimate a reddish illuminant based on the optimal color hy-
pothesis (see text for details).

Fig. 4. Example of the stimulus spatial configuration. The central
hexagon was used as a test field, and its chromaticity and luminance
were adjustable.
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Hexagons were 2° diagonally, and the whole stimulus conse-
quently subtended 15.6° by 14.0° �w × h�.
C. Observers

Four observers participated in all experiments. Three male
observers were 20–29 years of age, and one female observer
(HH) was 30–39 years of age. All observers had normal color
vision assessed by Ishihara Pseudoisochromatic Plate tests. TM
was an author.

D. Procedure

The observer was instructed to adjust both the chromaticity
and luminance of the test field so that it appeared as a full-white
paper under a test illuminant (paper-match criterion [23]) with
a track ball and a keypad. The chromaticity adjustment was
performed two-dimensionally on the MB chromaticity dia-
gram. For all experiments, we defined the chromaticity and lu-
minance of the test field selected as a full-white paper by the
observer as an estimated illuminant chromaticity and intensity,
respectively.

Prior to starting the first trial, the observer first adapted to an
equal energy white light (33.0 cd∕m2) that covered the full dis-
playable area of the CRT monitor for 2 min. Both the initial
chromaticity and luminance of the test field were chosen ran-
domly from a possible range for each trial. After satisfactory
adjustments without time limitations, the observer recorded
their final choice. One block consisted of five successive rep-
etitions without inter-trial interval. In the same block, the same
surrounding stimuli but different spatial arrangements were
presented. The observer readapted to the equal energy white
for 30 s between blocks. One session comprised 18 blocks
in Experiments 1 and 3 and 17 blocks in Experiment 2.
The order of the conditions was fully randomized within a
session. The observer performed four sessions resulting in
20 repetitions for each condition.

3. EXPERIMENT 1

A. Surrounding Stimuli

To examine the effect of stimulus dimensionality, we employed
60 hexagons for the 2D condition and 60 cubes for the 3D
condition as surrounding stimuli, as shown in Fig. 5. A cube
has the same chromaticity on all sides. The luminance of its
topside was the same as that of the corresponding flat hexagon
in the 2D condition, and its left and right sides had 60% and

20% luminance of the topside, respectively. These luminance
values were chosen so that the resulting stimulus appeared as an
illuminated cube. The observers confirmed these points in a
pilot test.

We used three chromaticities and two luminance levels
(bright and dim), resulting in the six colors. For the test illu-
minants, we employed 3000, 6500, and 20,000 K illuminants
on the black body locus. Their intensity, which was defined as
their luminance when they were reflected from the perfect re-
flecting diffuser, was 28.6 cd∕m2.

To test the optimal color hypothesis and investigate lumi-
nance and chromaticity contributions to illuminant estimation
separately, we manipulated the luminance and chromaticity of
each surface in three ways, as illustrated in Fig. 6. There are
several ways to segregate the contribution of luminance shift
and chromaticity shift, but we employed the following manip-
ulations. Note that these were also used in a previous experi-
ment [21].

In the (a) luminance shift condition, we first determined
three MB chromaticities, which are R (0.824, 0.123), G
(0.659, 0.181), and B (0.641, 2.70), so that we could use
the display gamut as widely as possible, and its average corre-
sponds to the equal energy white,WE (0.708, 1.00). Then, the
luminances of three bright colors were set to those of optimal
colors under each test illuminant, while their chromaticities
were kept constant across the test illuminants.

In the (b) chromaticity shift condition, we first defined the
three optimal surfaces, which had R (0.759, 0.867), G (0.678,
0.700), and B (0.666, 1.78), under the 6500 K test illuminant.
When those surfaces were placed under different test illumi-
nants (3000 or 20,000 K), their chromaticity and luminance
shifted. We employed only chromaticity shift for three surfaces
under the corresponding test illuminants. In order to shift the
chromaticity without luminance changes, we chose the lowest
luminance value across the three test illuminants for each sur-
face such that none of the surfaces exceeded the optimal color
distribution under any of the illuminants.

In the (c) luminance and chromaticity shift condition, we
again first defined the three optimal surfaces, which had R
(0.733, 0.857), G (0.677, 0.705), and B (0.666, 1.79), under
the 6500 K test illuminant. Then, to create 3000 and 20,000 K
conditions, we placed those surfaces under each illuminant and
employed the chromaticity and luminance shifts.

(a) (b)

Fig. 5. (a) 2D and (b) 3D surrounding stimuli employed in
Experiment 1. The manipulation of the shade is described in the main
text.

Fig. 6. Simplified illustration of each shift condition. Hexagons and
triangles show scene surfaces and optimal color distribution under
three illuminants, respectively. Details are in the main text.
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These manipulations resulted in the surrounding stimuli
shown in Fig. 7 (only the 2D condition is shown here).
There were 18 conditions consisting of the combination among
three shift conditions (luminance shift, chromaticity shift, and
luminance and chromaticity shift), three test illuminants
(3000, 6500, and 20,000 K), and two stimulus dimensional-
ities (2D and 3D). The same number of each of the six colors

was arranged for the same eccentricity, and no two of the same
colors were placed next to each other. Note that different spatial
arrangements were used for each trial.

B. Results and Discussion

The colored circles in Fig. 8 show the mean chromaticity
settings across 20 responses for two observers, which corre-
sponded to the estimated illuminant chromaticity. Orange,
black, and blue represent 3000, 6500, and 20,000 K, respec-
tively. The cross and plus symbols indicate the white point
of each illuminant and the mean chromaticity of the surround-
ing stimuli, respectively. Note that there is only one plus sym-
bol in the luminance shift condition because the mean
chromaticities were the same across the test illuminants.
We also calculated the mean cone response of the surrounding
stimuli for each condition, and then converted those into
MB chromaticity. These mean LMS are shown as diamonds.
The error bar indicates ± S.D. across 20 repetitions. If the
observer estimated test illuminants perfectly, each colored
circle should superimpose the corresponding illuminant
chromaticity.

In the luminance shift condition (top row panels), if the
visual system fully relies on chromaticity to estimate an illumi-
nant and does not exploit luminance at all, all settings should
overlap because the chromaticity was kept constant across the
test illuminants. For both 2D and 3D conditions, (a) observer
HH and (b) TM indicated that the settings under the three test
illuminants were somewhat close to each other. However, the

(a) (b) (c)

Fig. 7. Surrounding stimuli employed in Experiment 1. Each row
and column indicates different color temperature and shift conditions,
respectively.

(a) (b)

Fig. 8. Results of two observers in Experiment 1. Filled color circles show the mean setting across 20 repetitions. X, pluses, and diamonds indicate
illuminant chromaticity, mean chromaticity, and mean LMS, respectively. The error bar indicates ± S.D. across 20 repetitions.
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settings under 3000 and 20,000 K shifted slightly toward the
white point of the corresponding illuminant.

For (a) observer HH, for both 2D and 3D conditions,
multiple comparisons with Bonferroni’s correction (significance
level: 0.05) showed that the setting under 3000 Kwas separated
significantly from the settings under 6500 and 20,000 K in the
redness direction. It was also shown that the setting under
20,000 K was separated significantly from the settings under
3000 and 6500 K in the blueness direction in the 2D condi-
tion, but only from the setting under 3000 K in the 3D con-
dition. For (b) observer TM, for both 2D and 3D conditions,
settings under the three illuminants were separated significantly
in both the redness and blueness directions. Therefore,
although the amounts of shifts were substantially smaller than
the physical shift of the illuminant chromaticity, these results
confirm that the visual system seems to exploit the luminance
balance to estimate an illuminant to some extent.

In the chromaticity shift condition (middle row panels) in
the 2D condition for (a) observer HH, the settings under 6500
and 20,000 K were clustered closely, but the setting under
3000 K was distant from the settings under 6500 and
20,000 K. The 3D condition appears to show somewhat better
estimations than the 2D condition. The (b) observer TM
showed better estimations than those observed in the lumi-
nance shift condition in both 2D and 3D conditions.
Therefore, as expected, the visual system was able to exploit
chromaticity to estimate an illuminant even when the lumi-
nance did not change across the test illuminants.

In the luminance and chromaticity shift condition (bottom
row panels), both observers’ estimated points of the illuminants
for 3000 and 20,000 K shifted more than the other two shift
conditions for both the 2D and 3D conditions.

However, overall, the effect of stimulus dimensionality ap-
pears small or nearly absent. The other two observers also
showed similar trends.

To quantify the relative amount of shift between the settings
under 6500 and 3000 K or 20,000 K, we calculated a con-
stancy index. However, to argue the amount of shift properly,
it would be necessary to unify the scale of both axes in the MB
chromaticity diagram. Thus, we divided both axes by the S.D.
of the settings under 6500 K separately for each condition.
Although the method to quantify the degree of color constancy
remains controversial [1], we define it as Eq. (1) in the present
study:

CI � a∕b (1)

In Eq. (1), a indicates the distance between the observer setting
under 6500 K and either 3000 or 20,000 K, and b is the
distance between the illuminant chromaticity points. Higher
constancy index (CI) values indicate better color constancy.

Figure 9 shows the averaged constancy indices for all observ-
ers. The left and right bars indicate the 2D and 3D scene
conditions. For both 3000 and 20,000 K, luminance and
chromaticity shift conditions showed the highest CI, indicating
that color constancy worked the best when the illuminant
change occurred naturally. However, it was also clearly found
that the luminance shift condition shows some amount of color
constancy. Again, the effect of stimulus dimensionality seems
negligible.

We conducted three-way repeated measures analysis of vari-
ance (ANOVA), with stimulus dimensionalities (2D and 3D),
shift conditions (luminance shift, chromaticity shift, and lumi-
nance and chromaticity shift), and test illuminants (3000 and
20,000 K) as within-subject factors.

We found significant main effects of shift conditions
(F�2; 6� � 16.72, p < 0.01), while the main effects of
stimulus dimensionality and test illuminants were not signifi-
cant (F�1; 3� � 0.0021, p > 0.1; F�1; 3� � 0.0155, p > 0.1).
Note that there was no significant interaction. Multiple com-
parison by Bonferroni’s correction (significance level: 0.05) re-
vealed that the CI was significantly higher for the luminance
and chromaticity shift condition than for the luminance shift
and chromaticity shift conditions.

Interestingly, there was no significant difference between the
luminance shift and chromaticity shift condition, suggesting
that luminance shifts could have a similar contribution to chro-
maticity shifts for illuminant estimation. However, since we
employed surrounding stimuli with higher purities for the lu-
minance shift condition, as shown in Fig. 7, it seems difficult to
conclude whether this is truly because luminance and chroma-
ticity contribute equally to illuminant estimation. These differ-
ent spectral purities across shift conditions were refined in
Experiment 2.

Next, we discuss the illuminant intensity estimated by the
observers. The bars in Fig. 10 show the average luminance set-
tings across all observers. The error bars indicate ±S.E. across
observers. The green diamonds show the actual illuminant in-
tensity, which was constant at 28.6 cd∕m2 across all conditions
by design. The blue circles and red squares show the mean lu-
minance and the highest luminance of the surrounding stimuli,
respectively. Therefore, it was expected that the luminance set-
tings would become equal to the green diamonds if the visual
system estimated the illuminant intensity perfectly. On the
other hand, if the estimation was made based on mean lumi-
nance or highest luminance, luminance settings should change
across the conditions accordingly.

Figure 10 shows that the luminance settings appear substan-
tially higher than the actual illuminant intensity. Although the
mean luminance in the 3D condition was always less than that
of the corresponding condition in the 2D condition, luminance
settings were not largely different between the 2D and 3D

Fig. 9. Averaged constancy indices across four observers in
Experiment 1. Higher values indicate better color constancy. The error
bar indicates ± S.E. across four observers. The left and right bars in-
dicate 2D and 3D conditions, respectively.
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conditions. This appears to rule out the possibility that the
visual system uses mean luminance to estimate the illuminant
intensity.

Three-way repeated measures ANOVAwas performed, with
the stimulus dimensionality (2D and 3D), the shift condition
(luminance shift, chromaticity shift, and luminance and chro-
maticity shift), and the test illuminant (3000, 6500, and
20,000 K) as within-subject factors for the averaged luminance
settings across the observers.

We found a significant main effect of the shift condition
(F�2; 6� � 14.32, p < 0.01); however, the main effects of
the other two factors were not significant. Note that no inter-
actions were observed.

Multiple comparison with Bonferroni’s correction (signifi-
cance level: 0.05) revealed that the luminance setting was
significantly higher for the luminance and chromaticity shift
condition than for the luminance shift condition and chroma-
ticity shift conditions.

Experiment 1 was intended to reveal whether the effect of
the luminance-balance change could be enhanced by the 3D
surrounding stimuli. However, the results showed no effect.
Some previous studies argue the effect of 3D stimuli. Other
studies have shown that color constancy improves by, for ex-
ample, the binocular disparity [9], 3D stimuli [22,24], depth
cue [25], and spatial structure [26].

However, similar to our results, some studies [27,28]
have shown that scene dimensionality and complexity have lim-
ited influence on color constancy. In addition, in a recent re-
view paper [1], it was pointed out that the degrees of color
constancy are not systematically different between 2D and
3D scenes. Since the implications of the terms “2D” and
“3D” differ from one study to another, it is difficult to make
an exact comparison. However, at least for the present stimuli,
stimulus dimensionality does not appear to affect the color
constancy.

The results of Experiment 1 suggest that the relatively small
effect of luminance shift observed in our previous study [21]
was unlikely because the observers could not separate an illu-
minant from a surface due to stimulus dimensionality. Under
the 3D condition, it is possible that the observers make a

judgment based solely on the chromaticity or luminance of
the surfaces. In fact, in terms of the optimal color hypothesis,
stimulus dimensionality should not matter because it does not
affect the shape of chromaticity versus luminance distribution.
Consequently, the best-fit optimal color distribution should not
change. This might cause no difference between 2D and 3D
conditions.

In Experiment 2, we examined whether this small effect of
luminance balance might come from the small number (six) of
surrounding colors because it might be easier to pick the best-fit
optimal color distribution with a larger number of surrounding
colors. Thus, in Experiment 2, to address this issue, we em-
ployed the 60 surrounding color condition with same shift
conditions as in Experiment 1.

4. EXPERIMENT 2

A. Surrounding Stimuli

To examine the effect of the number of surrounding colors, the
60-color condition was employed in addition to the six-color
condition. We used flat hexagons for the surrounding stimuli,
which is the same as that used for the 2D condition in
Experiment 1.

We employed 30 or three chromaticities and two luminance
levels (bright and dark) for the 60- and six-color conditions,
respectively (Fig. 11). Three chromaticities of vertices were
employed for the six-color condition. Dark colors always had
50% luminance of bright colors.

In Experiment 1, we used chromaticities with different pu-
rities across the shift conditions; however, we needed to equate
those for a more accurate comparison. Thus, we first deter-
mined 30 chromaticities for all shift conditions, as shown in
Fig. 11. These values were determined such that their average
corresponded to the equal energy white and they did not exceed
the display gamut when the test illuminant changed. Then, we
simulated the illuminant change by three shifting manipula-
tions, the same as in Experiment 1.

As a result of the manipulations, we obtained surrounding
stimuli as shown in Fig. 12. Note that surrounding stimuli for

Fig. 10. Each bar shows the mean luminance settings across observ-
ers in Experiment 1. The error bar indicates ±S.E. across observers.
Green diamonds, red squares, and blue circles show the illuminant
intensity (kept constant across all conditions), the highest luminance,
and the mean luminance across surrounding stimuli, respectively.

Fig. 11. Thirty chromaticities used in Experiment 2. The plus sym-
bol indicates mean chromaticity (corresponds to the equal energy
white). Three chromaticities of vertices were employed for the
six-color condition.
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6500 K were identical in the (a) luminance shift and (c) lumi-
nance and chromaticity shift conditions. However, the lumi-
nance of the surrounding stimuli of 6500 K in the
(b) chromaticity shift condition slightly differed from these
two shift conditions because they were set to the lowest lumi-
nance across the three test illuminants such that no surface
exceeded the luminance of the optimal color under all test
illuminants. As a result, there were 17 conditions in
Experiment 2.

B. Results and Discussion

In Experiment 2, we show only CIs because the chromaticity
settings generally followed the patterns observed in Experiment
1. Figure 13 shows CIs for all conditions. The blue dashed line
indicates the average CIs between the 2D and 3D conditions in
Experiment 1 for comparison.

It was observed that color constancy worked in the lumi-
nance shift condition to some extent. However, CIs in the chro-
maticity shift condition and the luminance and chromaticity
shift condition appeared to be higher than in the luminance
shift condition. Importantly, the 60-color condition demon-
strated higher CIs than the six-color condition for the chroma-
ticity shift and luminance and chromaticity shift conditions,
indicating that a greater number of surrounding colors im-
proved estimation of the illuminant. However, for the lumi-
nance shift condition, the difference between the six and the
60-color conditions appears small.

CIs were analyzed by three-way repeated measures
ANOVA, with the number of surrounding colors (six and
60), shift conditions (luminance shift, chromaticity shift,
and luminance and chromaticity shift), and test illuminants
(3000 and 20,000 K) as within-subject factors.

We found significant main effects of shift conditions
(F�2; 6� � 26.50, p < 0.01) and the number of surrounding
colors (F�1; 3� � 10.49, p < 0.05); however, the main effect
of the test illuminants was not significant (F�1; 3� � 3.22,
p > 0.1). In addition, interaction between the shift condition

and the number of surrounding colors was marginally signifi-
cant (F�2; 6� � 4.22, p < 0.1).

Further analysis of the simple main effect showed higher CI
for the 60-color condition than the six-color condition in the
chromaticity shift condition (F�1; 3� � 22.22, p < 0.05) and
the luminance and chromaticity shift condition (F�1; 3� �
8.14, p < 0.1). However, there was no significant difference
between the six- and the 60-color conditions in the luminance
shift condition (F�1; 3� � 1.85, p > 0.1). In addition, there
was a significant simple main effect of the shift conditions
for both the six- and 60-color conditions (F�2; 6� � 17.21,
p < 0.01 and F�2; 6� � 24.63, p < 0.01, respectively).

To specify which shift condition showed higher CI, we con-
ducted further multiple comparisons by Bonferroni’s correction
(significance level: 0.05). It was revealed that, for both the six-
and 60-color conditions, the CI was significantly higher in the
chromaticity shift and the luminance and chromaticity shift
conditions than in the luminance shift condition. There was
also no significant difference between the chromaticity shift
and the luminance and chromaticity shift condition.
Therefore, the lack of difference between the luminance shift
and the chromaticity shift observed in Experiment 1 was likely
due to the difference in purity.

Figure 14 shows luminance settings for all conditions in
Experiment 2. We conducted three-way repeated measures
ANOVA, with the number of surrounding colors (six and 60),
shift conditions (luminance shift, chromaticity shift, and lumi-
nance and chromaticity shift), and test illuminants (3000,
6500, and 20,000 K) as within-subject factors.

The results show that neither the main effects nor the inter-
actionswere significant, suggesting that the estimated illuminant
intensities were relatively stable regardless of the condition.

The main finding in Experiment 2 is that increasing the
number of surrounding colors helps the estimation of the illu-
minant in the chromaticity shift condition and the luminance
and chromaticity shift condition, while that in the luminance
shift condition was not affected. This suggests that these are
mediated by different mechanisms.

As shown in the left panel of Fig. 2(b), the optimal color
distribution of 3000 K is separated from the other two

(a) (b) (c)

Fig. 12. Surrounding stimuli employed in Experiment 2. Only the
60-color condition is shown.

Fig. 13. Averaged constancy indices across four observers in
Experiment 2. Higher values indicate better color constancy. The error
bar indicates ±S.E. across four observers. The blue dashed lines are the
constancy index from Experiment 1 for comparison (2D and 3D
conditions were averaged).
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illuminants in the luminance direction primarily in the higher
redness region. Similarly, as shown in the right panel of
Fig. 2(b), the optimal color distribution of 20,000 K is pri-
marily separated from other illuminants at the high blueness
region. Therefore, if we need to estimate the illuminant with
only luminance balance as required in the luminance shift con-
dition, the scene would need to contain high redness or high
blueness surfaces. In Experiment 2, both the six- and 60-color
conditions contained at least some high reddish and bluish sur-
faces; thus, this might explain the lack of effect of the number
of surrounding colors. In Experiment 2, we chose various chro-
maticities so that the averaged chromaticity corresponded to the
equal energy white. However, if a scene predominantly consists
of reddish and bluish surfaces, the effect of luminance shift
could be enhanced.

To address this issue, we conducted a final experiment using
chromatically biased surrounding stimuli to reveal the effect of
chromatic bias on the luminance-balance-based estimation of
the illuminant.

5. EXPERIMENT 3

A. Surrounding Stimuli

In Experiment 3, we employed only the luminance shift con-
dition. To examine the effect of the chromatic bias of scene
surfaces, we employed the balanced scene, the red–blue dom-
inant scene, and the green–yellow dominant scene. The bal-
anced scene had various chromaticities across the display
gamut, and its average chromaticity corresponded to the equal
energy white. The green–yellow dominant scene was intended
to have a smaller effect of luminance balance than the other two
conditions because it lacks surfaces with high redness and
blueness.

We used three or 30 chromaticities and two luminance
levels (bright and dark) for the 60- and six-color conditions,
respectively (Fig. 15). Three chromaticities of vertices were
employed for the six-color condition. The manipulation of
the luminance shift was the same as in Experiments 1 and 2,

and the test illuminants were also the same. Figure 16 shows
the surrounding stimuli for the 60-color condition.

B. Results and Discussion

Figure 17 shows the mean chromaticity settings across 20 rep-
etitions. The cross and plus symbols indicate the illuminant
chromaticity and the mean chromaticity of the surrounding
stimuli, respectively. The mean LMS are shown as diamonds.
The error bar indicates ± S.D. across 20 repetitions.

In the balanced condition (top row), both observers indi-
cated that settings under 3000 and 20,000 K shifted toward
the white point of each illuminant in both the six- and 60-color
conditions, as demonstrated by the previous experiments.
Similar trends were observed in the red–blue dominant scene
(middle row), but the overall settings appeared to shift slightly
toward the mean chromaticity in both the six- and 60-color
conditions. The green–yellow dominant condition essentially
agreed with these trends, but the distance between the settings
under each illuminant appeared to be closer than the other two
conditions for both observers.

Figure 18 shows averaged CIs across four observers for all
conditions. We conducted three-way repeated measures
ANOVA, with the number of surrounding colors (six and
60), chromatic biases (balanced, red–blue dominant, and
green–yellow dominant), and test illuminants (3000 and
20,000 K) as within-subject factors.

Fig. 14. Each bar shows the mean luminance settings across observ-
ers in Experiment 2. The error bar indicates ±S.E. across observers.
Green diamonds, red squares, and blue circles show the illuminant
intensity (constant across all conditions), highest luminance, and mean
luminance across surrounding stimuli, respectively.

(a) (b) (c)

Fig. 15. Thirty chromaticities used for each scene in Experiment 3.
The plus symbol indicates mean chromaticity. Three chromaticities of
vertices were employed for the six-color condition.

(a) (b) (c)

Fig. 16. Surrounding stimuli employed in Experiment 3. Only the
60-color condition is shown.
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We found significant main effects of chromatic biases
(F�2; 6� � 6.65, p < 0.05); however, the main effects of the
number of surrounding colors and test illuminants were not sig-
nificant (F�1; 3� � 0.11, p > 0.1; F�1; 3� � 2.13, p > 0.1, re-
spectively). In addition, there was no significant interaction.

To confirm which chromatic bias condition demonstrated
significantly higher CI, we conducted multiple comparisons by
Bonferroni’s correction (significance level: 0.05). It was revealed
that the CI was significantly higher in the red–blue dominant
scene than in the green–yellow dominant scene. However, CIs
were not significantly different between the balanced and the

red–blue dominant scenes and between the balanced and the
yellow–green dominant scenes. Thus, we found that the lumi-
nance-balance-based illuminant estimation works better in the
red–blue dominant scene, suggesting that the effect of lumi-
nance balance depends on the chromaticities in the scene.
In addition, the number of surrounding colors had no signifi-
cant effect.

Figure 19 shows the luminance settings for all conditions in
Experiment 3. We conducted three-way repeated measures

(a) (b)

Fig. 17. Results of two individual observers in Experiment 3. The filled color circles show mean observer setting across 20 repetitions. X, pluses,
and diamonds indicate illuminant chromaticity, mean chromaticity, and mean LMS, respectively. The error bar indicates ± S.D. across 20
repetitions.

Fig. 18. Constancy indices for all conditions in Experiment 3.
Higher values indicate better color constancy. The error bar indicates
±S.E. across four observers.

Fig. 19. Each bar shows the mean luminance settings across observ-
ers in Experiment 3. The error bar indicates ±S.E. across observers.
Green diamonds, red squares, and blue circles show the illuminant
intensity (constant across all conditions), highest luminance, and mean
luminance across surrounding stimuli, respectively.
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ANOVA, with the number of surrounding colors (six and 60),
chromatic biases (balanced, red–blue dominant, and yellow–
green dominant), and test illuminants (3000 and 20,000 K)
as within-subject factors.

No main effect was found to be significant. However, the
interaction between the chromatic bias and the test illuminant
was significant (F�4; 12� � 3.74, p < 0.05). Further analysis
of the simple main effect revealed that the luminance settings
among chromatic balance conditions were significantly differ-
ent for the 20,000 K condition but not for the 3000 K con-
dition. Multiple comparisons using Bonferroni’s correction
(significance level: 0.05) revealed that, in the 20,000 K condi-
tion, the luminance setting was significantly higher in the green–
yellow dominant scene than in the red–blue dominant scene.

6. MODEL COMPARISON

Here, we compare the performance of the optimal color model
with mean chromaticity, mean LMS, and luminance–redness
correlation [13] models. Predictions from the proposed optimal
color model corresponded to the chromaticities of the test illu-
minants. The spatial-average chromaticity of the surrounding
stimuli was used as a prediction of the mean chromaticity
model. Spatial-average cone signals of the surrounding stimuli
were calculated first. We then converted those into MB
chromaticity coordinates and used the resulting values for
the prediction of the mean LMS model. Finally, for the lumi-
nance–redness correlation model, the prediction was calculated
using an equation reported by Golz and MacLeod [13] (see
theoretical analysis section). They also argued the lumi-
nance–blueness correlation [29]. However, we could not imple-
ment the model because an equation to predict blueness was
not provided.

The comparisons were performed separately for redness and
blueness directions, as shown in Fig. 20. The horizontal axis
shows the redness or blueness predicted by the models. The
vertical axis shows the actual settings averaged across four
observers. If model prediction and observers’ settings are exactly
the same, each plot should be on the 45° dashed black line.
However, note that the degree of color constancy is generally
measured relatively. For example, as seen in Eq. (1), color con-
stancy could be perfect even if the observer settings are not
exactly on corresponding illuminant chromaticities and deviate
from the black body locus. Such a deviation appears in
Fig. 20 as an intercept of a regression line. Thus, we argue
the accuracy of each model based only on how close a slope
is to 1.0.

For comparison of Experiments (a) 1 and (b) 2, linear re-
gression lines were fitted separately for six conditions in each
shift condition. The red solid, green dashed, and blue dotted
lines indicate luminance shift, chromaticity shift, and lumi-
nance and chromaticity shift conditions, respectively. For (c)
Experiment 3, fittings were performed separately for six con-
ditions in each chromatic bias. The black solid, magenta
dashed, and lime dotted lines indicate the balanced, red–blue
dominant, and green–yellow dominant conditions, respec-
tively. Although each panel has many plots, each colored regres-
sion line and its slope at the top left would help illustrate the
overall trend.

(a)

(b)

(c)

Fig. 20. Model comparison among optimal color, mean chromatic-
ity, mean LMS, and luminance–redness correlation [13] models for all
experiments. The horizontal and vertical axes show model prediction
and actual observer settings, respectively. Slopes are shown at the top
left in each panel in corresponding colors. Different colors indicate
different shift conditions in Experiment (a) 1 or (b) 2 and different
chromatic biases in (c) Experiment 3.
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In (a) Experiment 1, for the chromaticity shift condition
and luminance and chromaticity shift condition, performance
is roughly similar for all models for both redness and blueness
predictions. Therefore, once the chromaticity change is avail-
able to estimate an illuminant, each model can sufficiently pre-
dict the observer settings. However, for the luminance shift
condition, the mean chromaticity model does not work because
the chromaticities of all surfaces were constant across the test
illuminants and, thus, incorrectly provided the same estimation
for all test illuminants. In contrast, our optimal color model can
perform prediction to some extent, and the mean LMS and
luminance–redness correlation models worked sufficiently. A
similar trend was observed in Experiment 2.

In (c) Experiment 3, we employed only the luminance shift
condition; therefore, the mean chromaticity did not account for
any of the results. Again, our model predicts the results to some
extent. However, the mean LMS model also worked well, and
the redness–luminance correlation model worked reliably, espe-
cially for the green–yellow dominant condition.

Overall, for most conditions, the mean LMS and lumi-
nance–redness correlation models showed good predictions.
However, in our previous study [21], we tested a condition
where the mean LMS values were equated across the test illu-
minants (Experiment 4). It turned out that, under such a con-
dition, the observer’s settings were shifted to the opposite
direction from the illuminant chromaticity. Therefore, even
if the mean LMS is a good predictor in the present study, it
seems difficult to establish a basis for further discussion.

7. GENERAL DISCUSSION

Despite substantial psychophysical color constancy research,
only a few studies have investigated the luminance contribution
to color constancy. The present study was aimed at reinforcing
a previous finding, i.e., luminance balance contributes to the
estimation of an illuminant [21]. The luminance shift condi-
tion simulated the extreme situation in which the chromatic-
ities of all surfaces in a scene happen to be exactly the same
across the illuminants; thus, the visual system had to assess
the illuminant based only on luminance balance. Although
such a difficult situation never occurs in the real world, surpris-
ingly, the visual system can resolve the ambiguity of chroma-
ticity and estimate the illuminant to some extent. Needless to
say, chromaticity-based models do not account for this ability of
the visual system. These findings strongly confirm that the lu-
minance balance of surfaces plays an important role in achiev-
ing color constancy.

In Experiment 1, we tested whether stimulus dimensionality
could affect illuminant estimation. However, the results did not
show any effect. There has been an implicit expectation that
color constancy should improve for 3D stimuli because those
appear more informative compared to 2D stimuli. While some
studies have supported this idea, other studies did not show this
effect. Therefore, whether 3D stimuli can improve color con-
stancy remains controversial. However, in the present study, we
used a shade to make hexagons appear as cubes, whereas other
studies used various manipulations to create a 3D environment
[9,21–26]. Therefore, the present results may have been due to
the different stimuli manipulation method. It is possible that

the stimulus shape does not matter for the optimal color hy-
pothesis; however, concrete conclusions require the testing of
other shapes.

In Experiment 2, it was shown that chromatic variation en-
hances the effect of chromaticity shift. In contrast, chromatic
variation does not appear to affect the luminance-balance effect.
In terms of the optimal color hypothesis, low saturated colors
are less helpful because they could be within more than one
illuminant gamut. The six-color condition employed three
chromaticities chosen from the vertices of the chromaticity tri-
angle (Fig. 11) and thus contained the highest redness and
blueness surfaces. This might be the reason why we could
not obtain improvement by increasing the number of sur-
rounding colors. The important implication from this result
is that the visual system places greater weight on highly satu-
rated colors as well as bright colors [8] when estimating an il-
luminant.

In Experiment 3, we investigated the luminance-balance ef-
fect in chromatically biased scenes. The results showed that
observers made better estimations of illuminants for the
red–blue dominant scene compared to the green–yellow dom-
inant scene, suggesting that the accuracy of illuminant estima-
tion based on luminance balance depends on the chromaticity
in the scene. Although we specified a condition in which the
luminance balance could work better, the degree of color con-
stancy was still approximately 47% on average for the red–blue
dominant condition, which is still generally less than the CI in
the chromatic shift conditions. This result implies that the role
of luminance in estimating an illuminant is limited to specify
the direction of the illuminant color so that the visual system
can maintain color constancy when a scene has chromatic am-
biguity.

The observer’s task employed in the present study allowed us
to see the estimated illuminant chromaticity and intensity si-
multaneously. While the accuracy of the estimated chromaticity
was dependent on the conditions, the observer demonstrated
somewhat stable estimation of the illuminant intensity.
However, the estimated intensity was substantially and consis-
tently higher than the actual intensity of the test illuminant.
This implies that, even though we employed optimal colors
for surrounding stimuli, the visual system interpreted them
as darker surfaces. This in turn suggests that the assumption
of surfaces internalized in the visual system is less restricted than
optimal colors. Note that the illuminant gamut extends in the
luminance direction when its intensity increases. Therefore, in
terms of the optimal color hypothesis, accurate estimation of
illuminant intensity is required for a good estimation of illu-
minant chromaticity. For example, even if a scene contains a
bright reddish surface, a bluish illuminant gamut could hold
all surfaces in the scene when the visual system estimates
the illuminant intensity at a high level. This might have caused
the imperfect constancy observed in the present study. In the
future, a broader investigation is required to assess the overall
relationship between the estimations of intensity and color
temperature.

There has been a long-standing argument about the method
of measuring color constancy. Various methods have been
proposed, such as asymmetric matching [23], achromatic
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adjustment [30], color naming [31], and classification between
material change and illuminant change [32]. The present study
employed achromatic adjustment based on the paper-match
criterion rather than appearance match. It has often been re-
ported that this operational color constancy shows a relatively
high degree [23]. Nevertheless, CIs observed in luminance shift
conditions were small. Thus, it would be difficult to extract the
contribution of luminance in illuminant estimation using an
appearance-based task.

Themethod of quantifying the degree of color constancy also
remains controversial. In the present study, we employed a CI as
Eq. (1), but this simple measure fails to reflect the data trend if
shifts are in the opposite direction from the expected point. We
found that one observer showed such opposite shifts under sev-
eral conditions. However, the indices were nearly zero in those
cases; thus, they did not affect the overall trends significantly.

Note that no model consistently provided satisfactory esti-
mation for all conditions tested in the present study. This im-
plies that the visual system does not rely on a specific algorithm
to achieve color constancy. Although all models exploited the
global statistics across the entire scene, many studies have
agreed that multiple mechanisms underlie human color con-
stancy, such as an adaptation, simultaneous contrast, and even
familiarity or memory. Thus, the visual system could exploit the
most reliable cue in a given situation, which might cause diffi-
culty in specifying a consistently reliable model.

The neural mechanism for color constancy remains largely
unclear. While there appears to be an important role in the
retina, such as adaptation [33], color constancy could work
without taking adaptation time [34]. Higher cortical mecha-
nisms, such as V4, have also been identified [35–37]. Our pro-
posed model essentially assumes the opponent level process,
such as the mean chromaticity model. In our model compari-
son, we found that the mean LMS provided relatively reliable
estimation for the most of the tested condition. The mean LMS
model implies that illuminant estimation can be completed by
simply taking the average of each class of cone signals before
entering the opponent level process. However, it is possible that
these are the average luminance-weighted chromaticities rather
than actual cone signals.

The key idea of the proposed model stems from the expect-
ation that the visual system internalizes possible references
(optimal color distributions). In this notion, the given scene
information is used to determine which internalized reference
we should select to discount the influence of the illuminant
properly. Thus, our model appears to oppose to frameworks
that rely completely on external sources in a scene to set a refer-
ence, such as anchoring theory [38]. It is possible that the visual
system uses both; however, in any case, we require a further
investigation to reveal whether the visual system can utilize
prior knowledge about the world.

One might suspect that it is more reasonable to assume that
the visual system internalizes the shape of the natural scene dis-
tribution rather than the optimal color distribution because op-
timal colors do not exist in the real world. Although the present
study cannot rule out this possibility, one way to assess the fea-
sibility of the proposed method would be to identify how colors
are distributed in the world. As shown in Fig. 2(b), the shape of

optimal colors and natural object distribution are somewhat
similar, implying that the visual system has access to the relative
shape of the optimal color distribution. However, these natural
objects were a limited number of samples, and it appears diffi-
cult to determine the actual surface gamut in the natural world.
Pointer [39] has argued how large the gamut of real surfaces
(known as Pointer’s limit) would be, but this is also inconclu-
sive. Another clue could be the mysterious relationship between
the luminous threshold and the luminance of optimal color
[20]. Since there is nothing connecting natural objects with
the luminosity threshold, this seems to support what the visual
system knows to be the theoretical limit of surface colors rather
than the natural scene distribution.
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